Evidence on local climate policies achieving emission reduction targets by 2030

IF 6 2区 工程技术 Q1 ENVIRONMENTAL SCIENCES
Camilo Franco, Giulia Melica, Valentina Palermo, Paolo Bertoldi
{"title":"Evidence on local climate policies achieving emission reduction targets by 2030","authors":"Camilo Franco, Giulia Melica, Valentina Palermo, Paolo Bertoldi","doi":"10.1016/j.uclim.2024.102242","DOIUrl":null,"url":null,"abstract":"Local governments play a crucial role in combating climate change. They directly engage with citizens, impact their daily lives, and implement local policies to meet mitigation goals. This paper focuses on identifying specific policy themes that significantly contribute to achieving 2030 mitigation targets, thereby supporting local governments in developing effective climate action plans. We developed an innovative machine learning methodology to extract policy topics and evaluate their impact on meeting committed mitigation targets. This approach includes a new stopping criterion for Structural Topic Modeling. We applied this methodology to a sample of 744 Global Covenant of Mayors signatories, each committed to reducing a percentage of their baseline emissions by 2030. Our findings reveal that policies addressing building integration and transport modal shift, among others, show a strong positive correlation with the likelihood of meeting emissions reduction targets. By leveraging machine learning techniques, our methodology effectively categorizes diverse individual policies into more cohesive topics, facilitating knowledge sharing among committed cities and enhancing the overall effectiveness of climate action strategies.","PeriodicalId":48626,"journal":{"name":"Urban Climate","volume":"268 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Climate","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.uclim.2024.102242","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Local governments play a crucial role in combating climate change. They directly engage with citizens, impact their daily lives, and implement local policies to meet mitigation goals. This paper focuses on identifying specific policy themes that significantly contribute to achieving 2030 mitigation targets, thereby supporting local governments in developing effective climate action plans. We developed an innovative machine learning methodology to extract policy topics and evaluate their impact on meeting committed mitigation targets. This approach includes a new stopping criterion for Structural Topic Modeling. We applied this methodology to a sample of 744 Global Covenant of Mayors signatories, each committed to reducing a percentage of their baseline emissions by 2030. Our findings reveal that policies addressing building integration and transport modal shift, among others, show a strong positive correlation with the likelihood of meeting emissions reduction targets. By leveraging machine learning techniques, our methodology effectively categorizes diverse individual policies into more cohesive topics, facilitating knowledge sharing among committed cities and enhancing the overall effectiveness of climate action strategies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Urban Climate
Urban Climate Social Sciences-Urban Studies
CiteScore
9.70
自引率
9.40%
发文量
286
期刊介绍: Urban Climate serves the scientific and decision making communities with the publication of research on theory, science and applications relevant to understanding urban climatic conditions and change in relation to their geography and to demographic, socioeconomic, institutional, technological and environmental dynamics and global change. Targeted towards both disciplinary and interdisciplinary audiences, this journal publishes original research papers, comprehensive review articles, book reviews, and short communications on topics including, but not limited to, the following: Urban meteorology and climate[...] Urban environmental pollution[...] Adaptation to global change[...] Urban economic and social issues[...] Research Approaches[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信