Mesoscale fractures control the scale dependences of seismic velocity and fluid flow in subduction zones

IF 2.7 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Yuya Akamatsu, Hanaya Okuda, Manami Kitamura, Michiyo Sawai
{"title":"Mesoscale fractures control the scale dependences of seismic velocity and fluid flow in subduction zones","authors":"Yuya Akamatsu, Hanaya Okuda, Manami Kitamura, Michiyo Sawai","doi":"10.1016/j.tecto.2024.230606","DOIUrl":null,"url":null,"abstract":"Natural geological systems contain porosity structures of various scales that play different roles in geophysical properties, fluid flow, and geodynamics. To understand seismic activity associated with high pore-fluid pressure and fluid migration in subduction zones, it is necessary to explore the scale dependence of geophysical properties such as seismic velocity and permeability. Here, we compare laboratory-measured ultrasonic velocity measured on core samples from the Susaki area in the Shimanto accretionary complex, SW Japan, with sonic velocity measured by borehole logging experiments. Results show that P-wave velocity decreases from the laboratory (∼6 km/s) to the borehole scales (∼5 km/s). This scale-variant effect can be explained by a differential effective medium model whereby mesoscale porosity that is undetectable at the ultrasonic wavelength is introduced into the matrix phase with microscale porosity. Assuming typical apertures for micro- and mesoscale fractures, we estimate that the effective permeability can increase to 10<ce:sup loc=\"post\">−12</ce:sup>–10<ce:sup loc=\"post\">−11</ce:sup> m<ce:sup loc=\"post\">2</ce:sup> with increasing in the mesoscale porosity and decreasing P-wave velocity down to 4–5 km/s. These results indicate that seismic velocity anomalies and related seismic activity are associated with the presence of mesoscale fractures in subduction zones.","PeriodicalId":22257,"journal":{"name":"Tectonophysics","volume":"76 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tectonophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.tecto.2024.230606","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Natural geological systems contain porosity structures of various scales that play different roles in geophysical properties, fluid flow, and geodynamics. To understand seismic activity associated with high pore-fluid pressure and fluid migration in subduction zones, it is necessary to explore the scale dependence of geophysical properties such as seismic velocity and permeability. Here, we compare laboratory-measured ultrasonic velocity measured on core samples from the Susaki area in the Shimanto accretionary complex, SW Japan, with sonic velocity measured by borehole logging experiments. Results show that P-wave velocity decreases from the laboratory (∼6 km/s) to the borehole scales (∼5 km/s). This scale-variant effect can be explained by a differential effective medium model whereby mesoscale porosity that is undetectable at the ultrasonic wavelength is introduced into the matrix phase with microscale porosity. Assuming typical apertures for micro- and mesoscale fractures, we estimate that the effective permeability can increase to 10−12–10−11 m2 with increasing in the mesoscale porosity and decreasing P-wave velocity down to 4–5 km/s. These results indicate that seismic velocity anomalies and related seismic activity are associated with the presence of mesoscale fractures in subduction zones.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tectonophysics
Tectonophysics 地学-地球化学与地球物理
CiteScore
4.90
自引率
6.90%
发文量
300
审稿时长
6 months
期刊介绍: The prime focus of Tectonophysics will be high-impact original research and reviews in the fields of kinematics, structure, composition, and dynamics of the solid arth at all scales. Tectonophysics particularly encourages submission of papers based on the integration of a multitude of geophysical, geological, geochemical, geodynamic, and geotectonic methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信