{"title":"Two-dimensional Nanosheets by Liquid Metal Exfoliation","authors":"Yichao Bai, Youan Xu, Linxuan Sun, Zack Ward, Hongzhang Wang, Gothamie Ratnayake, Cong Wang, Mingchuang Zhao, Haoqi He, Jianxiang Gao, Menghan Wu, Sirong Lu, George Bepete, Deli Peng, Bilu Liu, Feiyu Kang, Humberto Terrones, Mauricio Terrones, Yu Lei","doi":"10.1002/adma.202416375","DOIUrl":null,"url":null,"abstract":"Liquid exfoliation is a scalable and effective method for synthesizing 2D nanosheets (NSs) but often induces contamination and defects. Here, liquid metal gallium (Ga) is used to exfoliate bulk layered materials into 2D NSs at near room temperature, utilizing the liquid surface tension and Ga intercalation to disrupt Van der Waals (vdW) forces. In addition, the process can transform the 2H-phase of transition metal dichalcogenides into the 1T’-phase under ambient conditions. This method produces high aspect ratio, surfactant-free 2D-NSs for more than 10 types of 2D materials that include h-BN, graphene, MoTe<sub>2</sub>, MoSe<sub>2</sub>, layered minerals, etc. The subsequent Ga separation via ethanol dispersion avoids the formation of additional defects and surfactant contamination. By adjusting initial defect levels of the layered materials, customize the metallicity and/or defectiveness of 2D NSs can be customized for applications such as birefringence-tunable modulators with exfoliated h-BN, and enhanced hydrogen evolution with defective MoS<sub>2</sub>. This approach offers a strategy to optimize liquid metal/2D interfaces, preserving intrinsic properties and enabling practical applications, potentially transforming optics, energy conversion, and beyond.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"27 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202416375","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Liquid exfoliation is a scalable and effective method for synthesizing 2D nanosheets (NSs) but often induces contamination and defects. Here, liquid metal gallium (Ga) is used to exfoliate bulk layered materials into 2D NSs at near room temperature, utilizing the liquid surface tension and Ga intercalation to disrupt Van der Waals (vdW) forces. In addition, the process can transform the 2H-phase of transition metal dichalcogenides into the 1T’-phase under ambient conditions. This method produces high aspect ratio, surfactant-free 2D-NSs for more than 10 types of 2D materials that include h-BN, graphene, MoTe2, MoSe2, layered minerals, etc. The subsequent Ga separation via ethanol dispersion avoids the formation of additional defects and surfactant contamination. By adjusting initial defect levels of the layered materials, customize the metallicity and/or defectiveness of 2D NSs can be customized for applications such as birefringence-tunable modulators with exfoliated h-BN, and enhanced hydrogen evolution with defective MoS2. This approach offers a strategy to optimize liquid metal/2D interfaces, preserving intrinsic properties and enabling practical applications, potentially transforming optics, energy conversion, and beyond.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.