Two-dimensional Nanosheets by Liquid Metal Exfoliation

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yichao Bai, Youan Xu, Linxuan Sun, Zack Ward, Hongzhang Wang, Gothamie Ratnayake, Cong Wang, Mingchuang Zhao, Haoqi He, Jianxiang Gao, Menghan Wu, Sirong Lu, George Bepete, Deli Peng, Bilu Liu, Feiyu Kang, Humberto Terrones, Mauricio Terrones, Yu Lei
{"title":"Two-dimensional Nanosheets by Liquid Metal Exfoliation","authors":"Yichao Bai, Youan Xu, Linxuan Sun, Zack Ward, Hongzhang Wang, Gothamie Ratnayake, Cong Wang, Mingchuang Zhao, Haoqi He, Jianxiang Gao, Menghan Wu, Sirong Lu, George Bepete, Deli Peng, Bilu Liu, Feiyu Kang, Humberto Terrones, Mauricio Terrones, Yu Lei","doi":"10.1002/adma.202416375","DOIUrl":null,"url":null,"abstract":"Liquid exfoliation is a scalable and effective method for synthesizing 2D nanosheets (NSs) but often induces contamination and defects. Here, liquid metal gallium (Ga) is used to exfoliate bulk layered materials into 2D NSs at near room temperature, utilizing the liquid surface tension and Ga intercalation to disrupt Van der Waals (vdW) forces. In addition, the process can transform the 2H-phase of transition metal dichalcogenides into the 1T’-phase under ambient conditions. This method produces high aspect ratio, surfactant-free 2D-NSs for more than 10 types of 2D materials that include h-BN, graphene, MoTe<sub>2</sub>, MoSe<sub>2</sub>, layered minerals, etc. The subsequent Ga separation via ethanol dispersion avoids the formation of additional defects and surfactant contamination. By adjusting initial defect levels of the layered materials, customize the metallicity and/or defectiveness of 2D NSs can be customized for applications such as birefringence-tunable modulators with exfoliated h-BN, and enhanced hydrogen evolution with defective MoS<sub>2</sub>. This approach offers a strategy to optimize liquid metal/2D interfaces, preserving intrinsic properties and enabling practical applications, potentially transforming optics, energy conversion, and beyond.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"27 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202416375","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Liquid exfoliation is a scalable and effective method for synthesizing 2D nanosheets (NSs) but often induces contamination and defects. Here, liquid metal gallium (Ga) is used to exfoliate bulk layered materials into 2D NSs at near room temperature, utilizing the liquid surface tension and Ga intercalation to disrupt Van der Waals (vdW) forces. In addition, the process can transform the 2H-phase of transition metal dichalcogenides into the 1T’-phase under ambient conditions. This method produces high aspect ratio, surfactant-free 2D-NSs for more than 10 types of 2D materials that include h-BN, graphene, MoTe2, MoSe2, layered minerals, etc. The subsequent Ga separation via ethanol dispersion avoids the formation of additional defects and surfactant contamination. By adjusting initial defect levels of the layered materials, customize the metallicity and/or defectiveness of 2D NSs can be customized for applications such as birefringence-tunable modulators with exfoliated h-BN, and enhanced hydrogen evolution with defective MoS2. This approach offers a strategy to optimize liquid metal/2D interfaces, preserving intrinsic properties and enabling practical applications, potentially transforming optics, energy conversion, and beyond.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信