Drone Rotational Triboelectric Nanogenerator for Supplemental Power Generation and RPM Sensing

IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Jasim M. Almardi, Xiangkun Bo, Jihong Shi, Irum Firdous, Walid A. Daoud
{"title":"Drone Rotational Triboelectric Nanogenerator for Supplemental Power Generation and RPM Sensing","authors":"Jasim M. Almardi, Xiangkun Bo, Jihong Shi, Irum Firdous, Walid A. Daoud","doi":"10.1016/j.nanoen.2024.110614","DOIUrl":null,"url":null,"abstract":"The global drone market is a multibillion-dollar industry that is experiencing rapid growth. While drones are commonly used for aerial photography, videography, surveying, search and rescue operations, most consumer and enterprise drones have limited onboard electronics other than what is required for basic flight operation. Such limitation is due to payload constraints, where more onboard electronics would require a larger battery pack, which increases the total payload and leads to higher energy consumption. To overcome this, a drone rotational triboelectric nanogenerator is developed comprising four units connected to the propellers’ motors of a quadcopter drone to capture and recycle the kinetic energy of the motors’ rotational energy for use as a supplemental power supply for onboard electronics. In this work, we report a drone rotational triboelectric nanogenerator that achieves a high surface power density of 3.24<!-- --> <!-- -->W/m<sup>2</sup>, charges capacitors, and operates as a self-powered RPM sensor.","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"20 1","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.nanoen.2024.110614","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The global drone market is a multibillion-dollar industry that is experiencing rapid growth. While drones are commonly used for aerial photography, videography, surveying, search and rescue operations, most consumer and enterprise drones have limited onboard electronics other than what is required for basic flight operation. Such limitation is due to payload constraints, where more onboard electronics would require a larger battery pack, which increases the total payload and leads to higher energy consumption. To overcome this, a drone rotational triboelectric nanogenerator is developed comprising four units connected to the propellers’ motors of a quadcopter drone to capture and recycle the kinetic energy of the motors’ rotational energy for use as a supplemental power supply for onboard electronics. In this work, we report a drone rotational triboelectric nanogenerator that achieves a high surface power density of 3.24 W/m2, charges capacitors, and operates as a self-powered RPM sensor.

Abstract Image

用于辅助发电和转速传感的无人机旋转摩擦电纳米发电机
全球无人机市场是一个价值数十亿美元的产业,正在快速增长。虽然无人机通常用于航空摄影、摄像、测量、搜索和救援行动,但除了基本飞行操作所需的电子设备外,大多数消费和企业无人机的机载电子设备有限。这种限制是由于有效载荷的限制,更多的机载电子设备将需要更大的电池组,这增加了总有效载荷并导致更高的能耗。为了克服这个问题,开发了一种无人机旋转摩擦电纳米发电机,该发电机由四个单元组成,连接到四轴飞行器的螺旋桨马达上,以捕获和回收马达旋转能量的动能,作为机载电子设备的补充电源。在这项工作中,我们报告了一种无人机旋转摩擦电纳米发电机,其表面功率密度高达3.24 W/m2,可为电容器充电,并可作为自供电RPM传感器运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信