Identifying and quantifying unexpected deep zooplankton diel vertical migration in a large deep lake

IF 3.8 1区 地球科学 Q1 LIMNOLOGY
Violaine Piton, Rafael Reiss, Ulrich Lemmin, Orlane Anneville, Gaël Many, Jérémy Keller, Valentin Kindschi, Htet Kyi Wynn, Serena Rasconi, Leslie Laine, David Andrew Barry
{"title":"Identifying and quantifying unexpected deep zooplankton diel vertical migration in a large deep lake","authors":"Violaine Piton, Rafael Reiss, Ulrich Lemmin, Orlane Anneville, Gaël Many, Jérémy Keller, Valentin Kindschi, Htet Kyi Wynn, Serena Rasconi, Leslie Laine, David Andrew Barry","doi":"10.1002/lno.12736","DOIUrl":null,"url":null,"abstract":"Diel Vertical Migration (DVM), a widespread zooplankton behavior in freshwater and marine systems, affects ecological interactions and biogeochemical cycles. In lakes, DVM has mainly been studied in the upper 50 m of the water column. However, based on acoustic and net sampling data collected in Lake Geneva, Switzerland (~ 309 m depth) during summer 2022, we demonstrate that DVM occurs down to ~ 125 m depth daily throughout the summer season. The daily descents terminated at around zenith when the Relative Rate of light Change (RRC) was the lowest, and the late afternoon ascent started when RRC values exceeded −0.005 s<jats:sup>−1</jats:sup>. DVM migration descent/ascent rates were asymmetric with faster mean upward rates () than downward rates (). Migration rates overall increased as summer progressed, corresponding to the intra‐seasonal increase in RRC. Cyclopoid copepods <jats:italic>Cyclops prealpinus</jats:italic> abundances correlated with the observed deep DVM and their migration responded to exogenous light cues. These new findings, which can also be expected to be relevant for other deep lakes, indicate that Lake Geneva's DVM greatly exceeds maximum migration depths previously reported for a lake. Thus, it is important to study zooplankton DVM dynamics throughout the entire water column in large, deep lakes since it plays an important role in buffering global climate change effects. Furthermore, it is suggested that present zooplankton DVM sampling protocols in large, deep lakes should be revised accordingly.","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":"269 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/lno.12736","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Diel Vertical Migration (DVM), a widespread zooplankton behavior in freshwater and marine systems, affects ecological interactions and biogeochemical cycles. In lakes, DVM has mainly been studied in the upper 50 m of the water column. However, based on acoustic and net sampling data collected in Lake Geneva, Switzerland (~ 309 m depth) during summer 2022, we demonstrate that DVM occurs down to ~ 125 m depth daily throughout the summer season. The daily descents terminated at around zenith when the Relative Rate of light Change (RRC) was the lowest, and the late afternoon ascent started when RRC values exceeded −0.005 s−1. DVM migration descent/ascent rates were asymmetric with faster mean upward rates () than downward rates (). Migration rates overall increased as summer progressed, corresponding to the intra‐seasonal increase in RRC. Cyclopoid copepods Cyclops prealpinus abundances correlated with the observed deep DVM and their migration responded to exogenous light cues. These new findings, which can also be expected to be relevant for other deep lakes, indicate that Lake Geneva's DVM greatly exceeds maximum migration depths previously reported for a lake. Thus, it is important to study zooplankton DVM dynamics throughout the entire water column in large, deep lakes since it plays an important role in buffering global climate change effects. Furthermore, it is suggested that present zooplankton DVM sampling protocols in large, deep lakes should be revised accordingly.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Limnology and Oceanography
Limnology and Oceanography 地学-海洋学
CiteScore
8.80
自引率
6.70%
发文量
254
审稿时长
3 months
期刊介绍: Limnology and Oceanography (L&O; print ISSN 0024-3590, online ISSN 1939-5590) publishes original articles, including scholarly reviews, about all aspects of limnology and oceanography. The journal''s unifying theme is the understanding of aquatic systems. Submissions are judged on the originality of their data, interpretations, and ideas, and on the degree to which they can be generalized beyond the particular aquatic system examined. Laboratory and modeling studies must demonstrate relevance to field environments; typically this means that they are bolstered by substantial "real-world" data. Few purely theoretical or purely empirical papers are accepted for review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信