{"title":"A feasibility study on cortisol and cortisone as biomarkers for psychological stress in wastewater-based epidemiology","authors":"Xue-Ting Shao, Yan-Song Wang, Zhen-Fang Gong, Yan-Ying Li, Jian-Guo Lin, De-Gao Wang","doi":"10.1016/j.watres.2024.123022","DOIUrl":null,"url":null,"abstract":"Psychological stress has a significant impact on individuals' quality of life and health. Traditionally, psychological stress assessment relies on self-reported tools such as the Perceived Stress Scale (PSS), which are inherently subjective. This study aims to evaluate the feasibility of using wastewater-based epidemiology (WBE) to assess cortisol and cortisone as biomarkers for psychological stress. We conducted sampling and monitoring of cortisol and cortisone concentrations at both a small-scale campus setting (five weeks) and a large-scale municipal wastewater treatment plant (12 months), calculating the mass loads of these hormones. At the campus level, while the mass load of cortisone was higher during exam weeks compared to regular class weeks, and higher in females than in males, no significant differences were observed in the mass load of cortisol. The mass load results of cortisone were consistent with the findings of the PSS-14 questionnaire. These results suggest that cortisone is a more suitable biomarker for psychological stress assessment. In the large-scale municipal wastewater samples, seasonal variations were observed, with higher levels of cortisol and cortisone in winter compared to summer, likely due to the COVID-19 outbreak in winter and the presence of external pharmaceutical sources. The results indicate that cortisone is more suitable for small-scale stress assessments, as larger-scale evaluations may be more significantly influenced by wastewater transport or sampling methodologies.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"148 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2024.123022","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Psychological stress has a significant impact on individuals' quality of life and health. Traditionally, psychological stress assessment relies on self-reported tools such as the Perceived Stress Scale (PSS), which are inherently subjective. This study aims to evaluate the feasibility of using wastewater-based epidemiology (WBE) to assess cortisol and cortisone as biomarkers for psychological stress. We conducted sampling and monitoring of cortisol and cortisone concentrations at both a small-scale campus setting (five weeks) and a large-scale municipal wastewater treatment plant (12 months), calculating the mass loads of these hormones. At the campus level, while the mass load of cortisone was higher during exam weeks compared to regular class weeks, and higher in females than in males, no significant differences were observed in the mass load of cortisol. The mass load results of cortisone were consistent with the findings of the PSS-14 questionnaire. These results suggest that cortisone is a more suitable biomarker for psychological stress assessment. In the large-scale municipal wastewater samples, seasonal variations were observed, with higher levels of cortisol and cortisone in winter compared to summer, likely due to the COVID-19 outbreak in winter and the presence of external pharmaceutical sources. The results indicate that cortisone is more suitable for small-scale stress assessments, as larger-scale evaluations may be more significantly influenced by wastewater transport or sampling methodologies.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.