{"title":"A tube-based constitutive model of brain tissue with inner pressure","authors":"Wei Liu, Zefeng Yu, Khalil I. Elkhodary, Hanlin Xiao, Shan Tang, Tianfu Guo, Xu Guo","doi":"10.1016/j.jmps.2024.105993","DOIUrl":null,"url":null,"abstract":"Many blood vessels exist in brain tissue. Their internal blood pressure plays a crucial role in physiological disorders, such as brain edema, stroke, or traumatic brain injury (concussion). Homogenized continuum mechanics-based brain tissue models can provide an attractive approach to rapidly simulate blood-pressure related physiological disorders, and traumatic brain injury. These homogenized models are much easier and faster to apply compared to finite element models that detail the microstructure. This paper thus presents a homogenized constitutive model for brain tissue in which the vascular networks and blood pressure are taken into account. The proposed model is microstructurally motivated and derived, in which the matrix of the brain tissue (gray/white matter) is modeled as hyperelastic material, while the blood vessels with their inner pressure define the microstructure. The proposed constitutive model is implemented in finite element software. Despite the simplicity of the model, we show it predicts strains and stresses comparable to finite element models with detailed microstructural representations under different loading conditions, demonstrating the potential usefulness of the model in rapidly estimating brain injury risk, hematoma formation, as well as brain tissue expansion/shrinkage.","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"40 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jmps.2024.105993","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Many blood vessels exist in brain tissue. Their internal blood pressure plays a crucial role in physiological disorders, such as brain edema, stroke, or traumatic brain injury (concussion). Homogenized continuum mechanics-based brain tissue models can provide an attractive approach to rapidly simulate blood-pressure related physiological disorders, and traumatic brain injury. These homogenized models are much easier and faster to apply compared to finite element models that detail the microstructure. This paper thus presents a homogenized constitutive model for brain tissue in which the vascular networks and blood pressure are taken into account. The proposed model is microstructurally motivated and derived, in which the matrix of the brain tissue (gray/white matter) is modeled as hyperelastic material, while the blood vessels with their inner pressure define the microstructure. The proposed constitutive model is implemented in finite element software. Despite the simplicity of the model, we show it predicts strains and stresses comparable to finite element models with detailed microstructural representations under different loading conditions, demonstrating the potential usefulness of the model in rapidly estimating brain injury risk, hematoma formation, as well as brain tissue expansion/shrinkage.
期刊介绍:
The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics.
The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics.
The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.