Single-Atom Platinum Immobilized on Polyimide for Highly Efficient and Durable Hydrogen Evolution Electrocatalysis

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Shouhan Zhang, Zhenzhong Wu, Yunxia Liu, Jing Bai, Yidan Ding, Ziwei Ma, Haiping Lin, Longsheng Zhang, Tianxi Liu
{"title":"Single-Atom Platinum Immobilized on Polyimide for Highly Efficient and Durable Hydrogen Evolution Electrocatalysis","authors":"Shouhan Zhang, Zhenzhong Wu, Yunxia Liu, Jing Bai, Yidan Ding, Ziwei Ma, Haiping Lin, Longsheng Zhang, Tianxi Liu","doi":"10.1002/aenm.202403945","DOIUrl":null,"url":null,"abstract":"Electrocatalytic hydrogen evolution reaction (HER) is widely regarded as a promising approach to convert renewable electricity into hydrogen. Platinum (Pt) based catalysts demonstrate superior activity toward acidic HER, but the scarcity of Pt metal presents obstacles for large-scale application. Therefore, constructing Pt single-atom catalysts (SACs) with maximum metal-atom-utilization efficiency renders a feasible strategy, which however is critically hindered by an unsatisfactory catalyst lifetime. Here, a general strategy is reported to develop novel HER catalysts with Pt single atoms immobilized on polyimide support, which can display an exceptional activity toward acidic HER while achieving an outstandingly high durability with negligible activity decay for 760 h of continuous operation at 100 mA cm<sup>−2</sup>. The detailed experimental and theoretical results unravel that, the polyimide support lowers the d-band level of Pt site with a reduced energy barrier for acidic HER and simultaneously promotes the proton concentration near Pt site, leading to appreciably improved HER kinetics. Additionally, the polyimide support is versatile toward immobilizing ruthenium, palladium, and other single metal atoms, providing an alternative approach to develop SACs with superior catalytic activity and durability.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"31 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202403945","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalytic hydrogen evolution reaction (HER) is widely regarded as a promising approach to convert renewable electricity into hydrogen. Platinum (Pt) based catalysts demonstrate superior activity toward acidic HER, but the scarcity of Pt metal presents obstacles for large-scale application. Therefore, constructing Pt single-atom catalysts (SACs) with maximum metal-atom-utilization efficiency renders a feasible strategy, which however is critically hindered by an unsatisfactory catalyst lifetime. Here, a general strategy is reported to develop novel HER catalysts with Pt single atoms immobilized on polyimide support, which can display an exceptional activity toward acidic HER while achieving an outstandingly high durability with negligible activity decay for 760 h of continuous operation at 100 mA cm−2. The detailed experimental and theoretical results unravel that, the polyimide support lowers the d-band level of Pt site with a reduced energy barrier for acidic HER and simultaneously promotes the proton concentration near Pt site, leading to appreciably improved HER kinetics. Additionally, the polyimide support is versatile toward immobilizing ruthenium, palladium, and other single metal atoms, providing an alternative approach to develop SACs with superior catalytic activity and durability.

Abstract Image

聚酰亚胺单原子铂固定化高效持久析氢电催化
电催化析氢反应(HER)被广泛认为是一种很有前途的将可再生电力转化为氢的方法。铂基催化剂对酸性HER表现出优异的催化活性,但铂金属的稀缺性阻碍了其大规模应用。因此,构建金属原子利用率最高的铂单原子催化剂(SACs)是一种可行的策略,但催化剂寿命不理想严重阻碍了这一策略的实现。本文报道了一种将Pt单原子固定在聚酰亚胺载体上的新型HER催化剂的总体策略,该催化剂在100毫安厘米−2连续运行760小时的情况下,对酸性HER表现出优异的活性,同时获得了非常高的耐久性,活性衰减可以忽略不计。详细的实验和理论结果表明,聚酰亚胺载体降低了Pt位点的d波段水平,降低了酸性HER的能量势垒,同时提高了Pt位点附近的质子浓度,从而显著改善了HER动力学。此外,聚酰亚胺载体可用于固定钌、钯和其他单金属原子,为开发具有优异催化活性和耐久性的sac提供了另一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信