Towards a better understanding of sorption of persistent and mobile contaminants to activated carbon: Applying data analysis techniques with experimental datasets of limited size
Navid Saeidi, Laura Lotteraner, Gabriel Sigmund, Thilo Hofmann, Martin Krauss, Katrin Mackenzie, Anett Georgi
{"title":"Towards a better understanding of sorption of persistent and mobile contaminants to activated carbon: Applying data analysis techniques with experimental datasets of limited size","authors":"Navid Saeidi, Laura Lotteraner, Gabriel Sigmund, Thilo Hofmann, Martin Krauss, Katrin Mackenzie, Anett Georgi","doi":"10.1016/j.watres.2024.123032","DOIUrl":null,"url":null,"abstract":"The complex sorption mechanisms of carbon adsorbents for the diverse group of persistent, mobile, and potentially toxic substances (PMs or PMTs) present significant challenges in understanding and predicting adsorption behavior. While the development of quantitative predictive tools for adsorbent design often relies on extensive training data, there is a notable lack of experimental sorption data for PMs accompanied by detailed sorbent characterization. Rather than focusing on predictive tool development, this study aims to elucidate the underlying mechanisms of sorption by applying data analysis methods to a high-quality dataset. This dataset includes more than 60 isotherms for 22 PM candidates and well-characterized high-surface-area activated carbon (AC) materials. We demonstrate how tools such as distance correlation and clustering can be used effectively to identify the key parameters driving the sorption process. Using these approaches, we found that aromaticity, followed by hydrophobicity, are key sorbate descriptors for sorption, overshadowing steric and charge effects for a given sorbent. Aromatic PMs, although classified as mobile contaminants based on their sorption to soil, are well adsorbed by AC as engineered adsorbent via π-π interactions. Non-aromatic and especially anionic compounds show much greater variability in sorption. The influence of ionic strength and natural organic matter on adsorption was considered. Our approach will help in the analysis of solute-sorption systems and in the development of new adsorbents beyond the specific examples presented here. In order to make the approach accessible, the code is freely available and described on GitHub (<span><span>https://github.com/Laura-Lotteraner/PM-Sorption</span><svg aria-label=\"Opens in new window\" focusable=\"false\" height=\"20\" viewbox=\"0 0 8 8\"><path d=\"M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z\"></path></svg></span>), following the FAIR data principles.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"24 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2024.123032","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The complex sorption mechanisms of carbon adsorbents for the diverse group of persistent, mobile, and potentially toxic substances (PMs or PMTs) present significant challenges in understanding and predicting adsorption behavior. While the development of quantitative predictive tools for adsorbent design often relies on extensive training data, there is a notable lack of experimental sorption data for PMs accompanied by detailed sorbent characterization. Rather than focusing on predictive tool development, this study aims to elucidate the underlying mechanisms of sorption by applying data analysis methods to a high-quality dataset. This dataset includes more than 60 isotherms for 22 PM candidates and well-characterized high-surface-area activated carbon (AC) materials. We demonstrate how tools such as distance correlation and clustering can be used effectively to identify the key parameters driving the sorption process. Using these approaches, we found that aromaticity, followed by hydrophobicity, are key sorbate descriptors for sorption, overshadowing steric and charge effects for a given sorbent. Aromatic PMs, although classified as mobile contaminants based on their sorption to soil, are well adsorbed by AC as engineered adsorbent via π-π interactions. Non-aromatic and especially anionic compounds show much greater variability in sorption. The influence of ionic strength and natural organic matter on adsorption was considered. Our approach will help in the analysis of solute-sorption systems and in the development of new adsorbents beyond the specific examples presented here. In order to make the approach accessible, the code is freely available and described on GitHub (https://github.com/Laura-Lotteraner/PM-Sorption), following the FAIR data principles.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.