Influence of catalysts on the electronic properties of gallium nitride nanomaterials

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Tobias Haposan, Joko Suwardy, Liliana Tjahjana, Umar Saleem, Caozheng Diao, Chi Sin Tang, Xinmao Yin, Mark B.H. Breese, Hong Wang, Muhammad Danang Birowosuto, Andrivo Rusydi
{"title":"Influence of catalysts on the electronic properties of gallium nitride nanomaterials","authors":"Tobias Haposan, Joko Suwardy, Liliana Tjahjana, Umar Saleem, Caozheng Diao, Chi Sin Tang, Xinmao Yin, Mark B.H. Breese, Hong Wang, Muhammad Danang Birowosuto, Andrivo Rusydi","doi":"10.1016/j.apsusc.2024.162111","DOIUrl":null,"url":null,"abstract":"The current advancement in tailoring the morphological states of GaN nanomaterials (GaN-NMs) is highly pursued. However, utilizing different types of catalysts during the synthesis could alter the outcome of the electronic response of the GaN-NMs. Herein, we demonstrate the applicability of the element- and surface-sensitive X-ray absorption spectroscopy (XAS) as a tool to distinguish Ga <em>L</em>- and N <em>K</em>-edges features of GaN-NMs synthesized with Ge, Ni, and Ge/Ni catalysts. In particular, we resolved the implication of tuning indirectly the unoccupied 2<em>p</em> states of N atoms corresponding to access the orbital hybridisation mixing at low temperatures. We propose that the type of catalysts play a role in determining the <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;s&lt;/mi&gt;&lt;msup is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.663ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -896.2 1426.9 1146.6\" width=\"3.314ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-73\"></use></g><g is=\"true\" transform=\"translate(469,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-70\"></use></g></g><g is=\"true\" transform=\"translate(503,362)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-33\"></use></g></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">s</mi><msup is=\"true\"><mrow is=\"true\"><mi is=\"true\">p</mi></mrow><mrow is=\"true\"><mn is=\"true\">3</mn></mrow></msup></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">s</mi><msup is=\"true\"><mrow is=\"true\"><mi is=\"true\">p</mi></mrow><mrow is=\"true\"><mn is=\"true\">3</mn></mrow></msup></mrow></math></script></span>/<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;s&lt;/mi&gt;&lt;msup is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.663ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -896.2 1426.9 1146.6\" width=\"3.314ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-73\"></use></g><g is=\"true\" transform=\"translate(469,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-70\"></use></g></g><g is=\"true\" transform=\"translate(503,362)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">s</mi><msup is=\"true\"><mrow is=\"true\"><mi is=\"true\">p</mi></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msup></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">s</mi><msup is=\"true\"><mrow is=\"true\"><mi is=\"true\">p</mi></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msup></mrow></math></script></span> ratio of N orbitals, as observed with a deconvolution of XAS spectra. Temperature-dependent XAS exemplified the <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;s&lt;/mi&gt;&lt;msup is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.663ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -896.2 1426.9 1146.6\" width=\"3.314ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-73\"></use></g><g is=\"true\" transform=\"translate(469,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-70\"></use></g></g><g is=\"true\" transform=\"translate(503,362)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">s</mi><msup is=\"true\"><mrow is=\"true\"><mi is=\"true\">p</mi></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msup></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">s</mi><msup is=\"true\"><mrow is=\"true\"><mi is=\"true\">p</mi></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msup></mrow></math></script></span> hold majority contribution for Ni- and Ge-catalysed GaN-NMs until reaching the inflexion point at 80 K. On the other hand, Ge/Ni catalyzed GaN-NMs display a minute-increasing trend of <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;s&lt;/mi&gt;&lt;msup is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.663ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -896.2 1426.9 1146.6\" width=\"3.314ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-73\"></use></g><g is=\"true\" transform=\"translate(469,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-70\"></use></g></g><g is=\"true\" transform=\"translate(503,362)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-33\"></use></g></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">s</mi><msup is=\"true\"><mrow is=\"true\"><mi is=\"true\">p</mi></mrow><mrow is=\"true\"><mn is=\"true\">3</mn></mrow></msup></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">s</mi><msup is=\"true\"><mrow is=\"true\"><mi is=\"true\">p</mi></mrow><mrow is=\"true\"><mn is=\"true\">3</mn></mrow></msup></mrow></math></script></span> contribution. We propose that the structure–property correlation can be realized from the XRD and XAS shifts, thus a simplified model of interconversion orbital arrangement of hybrid electronic states is proposed. To investigate the applications for optoelectronic applications based on the different shapes of the nanomaterials, current–voltage measurement reveals that Ge/Ni-catalyzed GaN-NMs shows the best photoelectric response as credited to their largest surface area. This work provides an understanding of tailoring the electronic properties of GaN-NMs by morphology control.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"76 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apsusc.2024.162111","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The current advancement in tailoring the morphological states of GaN nanomaterials (GaN-NMs) is highly pursued. However, utilizing different types of catalysts during the synthesis could alter the outcome of the electronic response of the GaN-NMs. Herein, we demonstrate the applicability of the element- and surface-sensitive X-ray absorption spectroscopy (XAS) as a tool to distinguish Ga L- and N K-edges features of GaN-NMs synthesized with Ge, Ni, and Ge/Ni catalysts. In particular, we resolved the implication of tuning indirectly the unoccupied 2p states of N atoms corresponding to access the orbital hybridisation mixing at low temperatures. We propose that the type of catalysts play a role in determining the sp3/sp2 ratio of N orbitals, as observed with a deconvolution of XAS spectra. Temperature-dependent XAS exemplified the sp2 hold majority contribution for Ni- and Ge-catalysed GaN-NMs until reaching the inflexion point at 80 K. On the other hand, Ge/Ni catalyzed GaN-NMs display a minute-increasing trend of sp3 contribution. We propose that the structure–property correlation can be realized from the XRD and XAS shifts, thus a simplified model of interconversion orbital arrangement of hybrid electronic states is proposed. To investigate the applications for optoelectronic applications based on the different shapes of the nanomaterials, current–voltage measurement reveals that Ge/Ni-catalyzed GaN-NMs shows the best photoelectric response as credited to their largest surface area. This work provides an understanding of tailoring the electronic properties of GaN-NMs by morphology control.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信