Jae-Hwan Lee, Yoon-Nam Kim, Junsang Lee, Jooik Jeon, Jae-Young Bae, Ju-Yong Lee, Kyung-Sub Kim, Minseong Chae, Hyunjun Park, Jong-hyoung Kim, Kang-Sik Lee, Jeonghyun Kim, Jung Keun Hyun, Daeshik Kang, Seung-Kyun Kang
{"title":"Hypersensitive meta-crack strain sensor for real-time biomedical monitoring","authors":"Jae-Hwan Lee, Yoon-Nam Kim, Junsang Lee, Jooik Jeon, Jae-Young Bae, Ju-Yong Lee, Kyung-Sub Kim, Minseong Chae, Hyunjun Park, Jong-hyoung Kim, Kang-Sik Lee, Jeonghyun Kim, Jung Keun Hyun, Daeshik Kang, Seung-Kyun Kang","doi":"10.1126/sciadv.ads9258","DOIUrl":null,"url":null,"abstract":"Real-time monitoring of infinitesimal deformations on complex morphologies is essential for precision biomechanical engineering. While flexible strain sensors facilitate real-time monitoring with shape-adaptive properties, their sensitivity is generally lower than spectroscopic imaging methods. Crack-based strain sensors achieve enhanced sensitivity with gauge factors (GFs) exceeding 30,000; however, such GFs are only attainable at large strains exceeding several percent and decline below 10 for strains under 10 <jats:sup>−3</jats:sup> , rendering them inadequate for minute deformations. Here, we introduce hypersensitive and flexible “meta-crack” sensors detecting infinitesimal strains through previously undiscovered crack-opening mechanisms. These sensors achieve remarkable GFs surpassing 1000 at strains of 10 <jats:sup>−4</jats:sup> on substrates with a Poisson’s ratio of −0.9. The crack orientation–independent gap-widening behavior elucidates the origin of hypersensitivity, corroborated by simplified models and finite element analysis. Additionally, parallel mechanical circuits of meta-cracks effectively address the trade-off between resolution and maximum sensing threshold. In vivo real-time monitoring of cerebrovascular dynamics with a strain resolution of 10 <jats:sup>−5</jats:sup> underscores the hypersensitivity and conformal adaptability of sensors.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"4 1","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.ads9258","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Real-time monitoring of infinitesimal deformations on complex morphologies is essential for precision biomechanical engineering. While flexible strain sensors facilitate real-time monitoring with shape-adaptive properties, their sensitivity is generally lower than spectroscopic imaging methods. Crack-based strain sensors achieve enhanced sensitivity with gauge factors (GFs) exceeding 30,000; however, such GFs are only attainable at large strains exceeding several percent and decline below 10 for strains under 10 −3 , rendering them inadequate for minute deformations. Here, we introduce hypersensitive and flexible “meta-crack” sensors detecting infinitesimal strains through previously undiscovered crack-opening mechanisms. These sensors achieve remarkable GFs surpassing 1000 at strains of 10 −4 on substrates with a Poisson’s ratio of −0.9. The crack orientation–independent gap-widening behavior elucidates the origin of hypersensitivity, corroborated by simplified models and finite element analysis. Additionally, parallel mechanical circuits of meta-cracks effectively address the trade-off between resolution and maximum sensing threshold. In vivo real-time monitoring of cerebrovascular dynamics with a strain resolution of 10 −5 underscores the hypersensitivity and conformal adaptability of sensors.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.