Enhancing Mine Blasting Safety: Developing Intelligent Systems for Accurate Flyrock Prediction through Optimized Group Method of Data Handling Methods

IF 4.8 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Xiaohua Ding, Mahdi Hasanipanah, Masoud Monjezi, Rini Asnida Abdullah, Tung Nguyen, Dmitrii Vladimirovich Ulrikh
{"title":"Enhancing Mine Blasting Safety: Developing Intelligent Systems for Accurate Flyrock Prediction through Optimized Group Method of Data Handling Methods","authors":"Xiaohua Ding, Mahdi Hasanipanah, Masoud Monjezi, Rini Asnida Abdullah, Tung Nguyen, Dmitrii Vladimirovich Ulrikh","doi":"10.1007/s11053-024-10445-y","DOIUrl":null,"url":null,"abstract":"<p>Flyrock, the unintended projection of rocks during mining blasts, poses significant safety risks and potential damage. Predicting flyrock is essential for implementing safety measures, minimizing injuries, preventing equipment and structural damage, optimizing blast plans, reducing downtime, and saving costs. Accurate predictions mitigate hazards, improve operational efficiency, and ensure the safety of workers and surrounding infrastructure. This study explored and developed hybrid methods for predicting flyrock using the group method of data handling (GMDH). Four swarm-based algorithms—particle swarm optimization (PSO), artificial bee colony (ABC), ant colony optimization (ACO), and whale optimization algorithm (WOA)—were combined with GMDH to enhance prediction accuracy. Additionally, a k-fold cross-validation method was applied to the datasets to improve reliability. The accuracy of these methods was evaluated using various statistical functions, such as Nash–Sutcliffe coefficient and Willmott's index, along with R-squared correlation (R<sup>2</sup>) graphs, half-violin plots, and quantile–quantile plots. The R<sup>2</sup> values for the WOA–GMDH, ACO–GMDH, ABC–GMDH, and PSO–GMDH models were 0.99, 0.97, 0.96, and 0.96, respectively. The WOA–GMDH method yielded the most accurate results, demonstrating superior performance when combined with GMDH. Furthermore, the performance of the WOA–GMDH model was compared with models developed in the literature using the same database, confirming its effectiveness. Sensitivity analysis identified that, in WOA–GMDH modeling, the powder factor as the most significant parameter while the spacing parameter was the least significant. The ACO–GMDH method exhibited the narrowest uncertainty band; whereas, the PSO–GMDH method had the widest, indicating the highest level of uncertainty.</p>","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"31 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11053-024-10445-y","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Flyrock, the unintended projection of rocks during mining blasts, poses significant safety risks and potential damage. Predicting flyrock is essential for implementing safety measures, minimizing injuries, preventing equipment and structural damage, optimizing blast plans, reducing downtime, and saving costs. Accurate predictions mitigate hazards, improve operational efficiency, and ensure the safety of workers and surrounding infrastructure. This study explored and developed hybrid methods for predicting flyrock using the group method of data handling (GMDH). Four swarm-based algorithms—particle swarm optimization (PSO), artificial bee colony (ABC), ant colony optimization (ACO), and whale optimization algorithm (WOA)—were combined with GMDH to enhance prediction accuracy. Additionally, a k-fold cross-validation method was applied to the datasets to improve reliability. The accuracy of these methods was evaluated using various statistical functions, such as Nash–Sutcliffe coefficient and Willmott's index, along with R-squared correlation (R2) graphs, half-violin plots, and quantile–quantile plots. The R2 values for the WOA–GMDH, ACO–GMDH, ABC–GMDH, and PSO–GMDH models were 0.99, 0.97, 0.96, and 0.96, respectively. The WOA–GMDH method yielded the most accurate results, demonstrating superior performance when combined with GMDH. Furthermore, the performance of the WOA–GMDH model was compared with models developed in the literature using the same database, confirming its effectiveness. Sensitivity analysis identified that, in WOA–GMDH modeling, the powder factor as the most significant parameter while the spacing parameter was the least significant. The ACO–GMDH method exhibited the narrowest uncertainty band; whereas, the PSO–GMDH method had the widest, indicating the highest level of uncertainty.

提高矿山爆破安全性:利用数据处理方法的优化分组方法开发飞岩精确预测智能系统
飞岩,即在采矿爆炸过程中意外产生的岩石,具有重大的安全风险和潜在的损害。预测飞岩对于实施安全措施、减少伤害、防止设备和结构损坏、优化爆破计划、减少停机时间和节省成本至关重要。准确的预测减少了危险,提高了操作效率,并确保了工人和周围基础设施的安全。本研究探索并发展了利用数据处理分组方法(GMDH)预测飞岩的混合方法。将粒子群优化算法(PSO)、人工蜂群算法(ABC)、蚁群优化算法(ACO)和鲸鱼优化算法(WOA)四种基于群体的算法与GMDH相结合,提高预测精度。此外,对数据集采用k-fold交叉验证方法以提高可靠性。使用各种统计函数,如Nash-Sutcliffe系数和Willmott指数,以及r平方相关(R2)图、半小提琴图和分位数-分位数图来评估这些方法的准确性。WOA-GMDH、ACO-GMDH、ABC-GMDH和PSO-GMDH模型的R2分别为0.99、0.97、0.96和0.96。WOA-GMDH方法得到的结果最准确,与GMDH联合使用效果更好。此外,将WOA-GMDH模型的性能与文献中使用同一数据库的模型进行了比较,证实了其有效性。灵敏度分析发现,在WOA-GMDH模型中,粉末因素是最显著的参数,而间距参数是最不显著的参数。ACO-GMDH方法的不确定带最窄;而PSO-GMDH方法最宽,不确定度最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Natural Resources Research
Natural Resources Research Environmental Science-General Environmental Science
CiteScore
11.90
自引率
11.10%
发文量
151
期刊介绍: This journal publishes quantitative studies of natural (mainly but not limited to mineral) resources exploration, evaluation and exploitation, including environmental and risk-related aspects. Typical articles use geoscientific data or analyses to assess, test, or compare resource-related aspects. NRR covers a wide variety of resources including minerals, coal, hydrocarbon, geothermal, water, and vegetation. Case studies are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信