Io’s SO2 and NaCl Wind Fields from ALMA

Alexander E. Thelen, Katherine de Kleer, Martin A. Cordiner, Imke de Pater, Arielle Moullet and Statia Luszcz-Cook
{"title":"Io’s SO2 and NaCl Wind Fields from ALMA","authors":"Alexander E. Thelen, Katherine de Kleer, Martin A. Cordiner, Imke de Pater, Arielle Moullet and Statia Luszcz-Cook","doi":"10.3847/2041-8213/ad9bb5","DOIUrl":null,"url":null,"abstract":"We present spatially resolved measurements of SO2 and NaCl winds on Io at several unique points in its orbit: before and after eclipse and at maximum eastern and western elongation. The derived wind fields represent a unique case of meteorology in a rarified, volcanic atmosphere. Through the use of Doppler shift measurements in emission spectra obtained with the Atacama Large Millimeter/submillimeter Array between ~346 and 430 GHz (~0.70–0.87 mm), line-of-sight winds up to ~−100 m s−1 in the approaching direction and >250 m s−1 in the receding direction were derived for SO2 at altitudes of ~10–50 km, while NaCl winds consistently reached ~∣150–200∣ m s−1 in localized regions up to ~30 km above the surface. The wind distributions measured at maximum east and west Jovian elongations and on the sub-Jovian hemisphere pre- and posteclipse were found to be significantly different and complex, corroborating the results of simulations that include surface temperature and frost distribution, volcanic activity, and interactions with the Jovian magnetosphere. Further, the wind speeds of SO2 and NaCl are often inconsistent in direction and magnitude, indicating that the processes that drive the winds for the two molecular species are different and potentially uncoupled; while the SO2 wind field can be explained through a combination of sublimation-driven winds, plasma torus interactions, and plume activity, the NaCl winds appear to be primarily driven by the plasma torus.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ad9bb5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present spatially resolved measurements of SO2 and NaCl winds on Io at several unique points in its orbit: before and after eclipse and at maximum eastern and western elongation. The derived wind fields represent a unique case of meteorology in a rarified, volcanic atmosphere. Through the use of Doppler shift measurements in emission spectra obtained with the Atacama Large Millimeter/submillimeter Array between ~346 and 430 GHz (~0.70–0.87 mm), line-of-sight winds up to ~−100 m s−1 in the approaching direction and >250 m s−1 in the receding direction were derived for SO2 at altitudes of ~10–50 km, while NaCl winds consistently reached ~∣150–200∣ m s−1 in localized regions up to ~30 km above the surface. The wind distributions measured at maximum east and west Jovian elongations and on the sub-Jovian hemisphere pre- and posteclipse were found to be significantly different and complex, corroborating the results of simulations that include surface temperature and frost distribution, volcanic activity, and interactions with the Jovian magnetosphere. Further, the wind speeds of SO2 and NaCl are often inconsistent in direction and magnitude, indicating that the processes that drive the winds for the two molecular species are different and potentially uncoupled; while the SO2 wind field can be explained through a combination of sublimation-driven winds, plasma torus interactions, and plume activity, the NaCl winds appear to be primarily driven by the plasma torus.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信