Constructing Strategy for Realizing White-Light-Emitting of Organic Aggregates Based on Self-Assembling Conjugated Polymer Nanobowls

IF 5.1 Q1 POLYMER SCIENCE
Weijie Yuan, Lan Shu, Jing Xu, Chenhao Hua, Jin Huang
{"title":"Constructing Strategy for Realizing White-Light-Emitting of Organic Aggregates Based on Self-Assembling Conjugated Polymer Nanobowls","authors":"Weijie Yuan, Lan Shu, Jing Xu, Chenhao Hua, Jin Huang","doi":"10.1021/acsmacrolett.4c00714","DOIUrl":null,"url":null,"abstract":"The construction of single-component, white-light-emitting, conjugated polymers always utilizes fluorescence resonance energy transfer (FRET) for efficient emission. However, the main challenges in developing such materials primarily come from the effects of aggregation states during solution processing and the precise structural control required for the synthesis of compounds. Both aspects can affect the FRET between different lumophores in white-light-emitting materials. A novel supermolecular assembly strategy using new conjugated polymers (CPs) to fabricate single-component white-light-emitting CPs nanobowls (CPNBs) was developed to overcome the two difficulties. Specifically, through molecular structure engineering, side chains have been modified with a uracil group capable of hydrogen bonding, which stabilized the nanobowl structure during the supramolecular assembly process. Furthermore, by blending two kinds of CPs emitting different colors during the supramolecular assembly, single-component, white-light-emitting CPNBs have been achieved. The supramolecular strategy has resulted in stable and high-brightness, white-light emission, whether in aqueous solutions of different concentrations or in solid-state, polymer-based, composite materials. It also offers a more straightforward and environmentally friendly synthesis process for white-light-emitting organic materials.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"12 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsmacrolett.4c00714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The construction of single-component, white-light-emitting, conjugated polymers always utilizes fluorescence resonance energy transfer (FRET) for efficient emission. However, the main challenges in developing such materials primarily come from the effects of aggregation states during solution processing and the precise structural control required for the synthesis of compounds. Both aspects can affect the FRET between different lumophores in white-light-emitting materials. A novel supermolecular assembly strategy using new conjugated polymers (CPs) to fabricate single-component white-light-emitting CPs nanobowls (CPNBs) was developed to overcome the two difficulties. Specifically, through molecular structure engineering, side chains have been modified with a uracil group capable of hydrogen bonding, which stabilized the nanobowl structure during the supramolecular assembly process. Furthermore, by blending two kinds of CPs emitting different colors during the supramolecular assembly, single-component, white-light-emitting CPNBs have been achieved. The supramolecular strategy has resulted in stable and high-brightness, white-light emission, whether in aqueous solutions of different concentrations or in solid-state, polymer-based, composite materials. It also offers a more straightforward and environmentally friendly synthesis process for white-light-emitting organic materials.

Abstract Image

基于自组装共轭聚合物纳米碗实现有机聚集体白光的构建策略
单组分白光共轭聚合物的构建总是利用荧光共振能量转移(FRET)进行有效发射。然而,开发这种材料的主要挑战主要来自溶液处理过程中聚集状态的影响以及合成化合物所需的精确结构控制。这两个方面都会影响白光材料中不同发光团之间的FRET。利用新型共轭聚合物(CPs)制备单组分白光CPs纳米碗(cpnb)的超分子组装策略克服了这两个困难。具体来说,通过分子结构工程,侧链被能够形成氢键的尿嘧啶基团修饰,从而在超分子组装过程中稳定了纳米碗结构。此外,通过在超分子组装过程中混合两种不同颜色的CPs,可以获得单组分白光cpnb。无论是在不同浓度的水溶液中,还是在固态、聚合物基复合材料中,超分子策略都能产生稳定的、高亮度的白光发射。它还为白光有机材料的合成提供了一种更直接、更环保的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.40
自引率
3.40%
发文量
209
审稿时长
1 months
期刊介绍: ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science. With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信