PFOA, PFOS and PFHxS toxicokinetic considerations for the development of an in vivo approach for assessing PFAS relative bioavailability in soil

IF 10.3 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Albert L. Juhasz, Farzana Kastury, Ruby Jones, Mahima Seeborun, Tanya Caceres, Carina Herde, Michelle Cavallaro, Sarah Dilmetz, Joshua Hutchings, Yevgeniya Grebneva, Chris Desire, Peter Hoffmann
{"title":"PFOA, PFOS and PFHxS toxicokinetic considerations for the development of an in vivo approach for assessing PFAS relative bioavailability in soil","authors":"Albert L. Juhasz, Farzana Kastury, Ruby Jones, Mahima Seeborun, Tanya Caceres, Carina Herde, Michelle Cavallaro, Sarah Dilmetz, Joshua Hutchings, Yevgeniya Grebneva, Chris Desire, Peter Hoffmann","doi":"10.1016/j.envint.2024.109232","DOIUrl":null,"url":null,"abstract":"A Sprague-Dawley rat model was utilized to elucidate perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS) and perfluorohexanesulfonic acid (PFHxS) toxicokinetics with a goal of developing an <em>in vivo</em> approach for quantifying PFAS relative bioavailability in impacted soil. Following single dose administration (gavage) of ∼ 0.2–2000 µg kg<sup>−1</sup> BW of PFOA, PFOS or PFHxS, differences in PFAS blood, organ and excreta concentrations were observed over 120 h although linear dose responses were determined for area under the blood plasma time curves (AUC; PFOA, PFHxS), liver accumulation (LA: PFOS) and urinary excretion (UE; PFOA, PFHxS). Oral and intravenous dose (∼20 µg kg<sup>−1</sup> body weight) comparisons highlighted the high absolute bioavailability of PFOA (AUC: 100.3 ± 23.4 %; UE: 94.7 ± 26.6 %), PFOS (LA: 102.9 ± 15.6 %) and PFHxS (AUC: 88.3 ± 15.1 %; UE: 90.9 ± 7.3 %). Two spiked (<sup>14</sup>C-PFOA: 4360 ± 218 µg kg<sup>−1</sup>) and two PFAS impacted soils (PFOS: 1880–2250 µg kg<sup>−1</sup>; PFHxS: 61.2–65.5 µg kg<sup>−1</sup>) were utilized to measure PFAS relative bioavailability in soil matrices. In all soils, PFAS relative bioavailability was &gt; 86 % (PFOA: 87.0–90.9 %; PFOS: 86.1–90.4 %; PFHxS: 86.5–97.0 %) although the method could quantify bioavailability reductions (25.6–88.9 %) when hydrophobic and electrostatic interactions were enhanced through the addition of carbon-based amendments (5–10 % w/w).","PeriodicalId":308,"journal":{"name":"Environment International","volume":"24 1","pages":""},"PeriodicalIF":10.3000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment International","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envint.2024.109232","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

A Sprague-Dawley rat model was utilized to elucidate perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS) and perfluorohexanesulfonic acid (PFHxS) toxicokinetics with a goal of developing an in vivo approach for quantifying PFAS relative bioavailability in impacted soil. Following single dose administration (gavage) of ∼ 0.2–2000 µg kg−1 BW of PFOA, PFOS or PFHxS, differences in PFAS blood, organ and excreta concentrations were observed over 120 h although linear dose responses were determined for area under the blood plasma time curves (AUC; PFOA, PFHxS), liver accumulation (LA: PFOS) and urinary excretion (UE; PFOA, PFHxS). Oral and intravenous dose (∼20 µg kg−1 body weight) comparisons highlighted the high absolute bioavailability of PFOA (AUC: 100.3 ± 23.4 %; UE: 94.7 ± 26.6 %), PFOS (LA: 102.9 ± 15.6 %) and PFHxS (AUC: 88.3 ± 15.1 %; UE: 90.9 ± 7.3 %). Two spiked (14C-PFOA: 4360 ± 218 µg kg−1) and two PFAS impacted soils (PFOS: 1880–2250 µg kg−1; PFHxS: 61.2–65.5 µg kg−1) were utilized to measure PFAS relative bioavailability in soil matrices. In all soils, PFAS relative bioavailability was > 86 % (PFOA: 87.0–90.9 %; PFOS: 86.1–90.4 %; PFHxS: 86.5–97.0 %) although the method could quantify bioavailability reductions (25.6–88.9 %) when hydrophobic and electrostatic interactions were enhanced through the addition of carbon-based amendments (5–10 % w/w).

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environment International
Environment International 环境科学-环境科学
CiteScore
21.90
自引率
3.40%
发文量
734
审稿时长
2.8 months
期刊介绍: Environmental Health publishes manuscripts focusing on critical aspects of environmental and occupational medicine, including studies in toxicology and epidemiology, to illuminate the human health implications of exposure to environmental hazards. The journal adopts an open-access model and practices open peer review. It caters to scientists and practitioners across all environmental science domains, directly or indirectly impacting human health and well-being. With a commitment to enhancing the prevention of environmentally-related health risks, Environmental Health serves as a public health journal for the community and scientists engaged in matters of public health significance concerning the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信