Jian Zhao, Yangrui Huang, Shengchao Hu, Zhanyan Chen, Bi Chen, Weixiao Qi, Li Wang, Huijuan Liu
{"title":"Impact of Adaptation Time on Lincomycin Removal in Riverbank Filtration: A Long-Term Sand Column Study","authors":"Jian Zhao, Yangrui Huang, Shengchao Hu, Zhanyan Chen, Bi Chen, Weixiao Qi, Li Wang, Huijuan Liu","doi":"10.1016/j.jhazmat.2024.136950","DOIUrl":null,"url":null,"abstract":"Riverbank filtration (RBF) is an effective pretreatment technology for drinking water, removing organic micropollutants (OMPs) mainly through biodegradation. Despite documented improvements in OMP removal with extended adaptation time, the mechanisms remain poorly understood. This study assessed the removal of 128 OMPs over 82 d in a simulated RBF system, identified those with improved removal, and analyzed their properties. Additionally, microbial community shifts after 400 d of lincomycin exposure were studied to understand the underlying mechanisms. We found that the removal efficiencies of 24 OMPs, including lincomycin and fluconazole, improved by 3–77% over 82 d while being positively correlated with the presence of tertiary amides and secondary sulfonamides. Lincomycin removal efficiency rose from 20% to 95% over 68 days and stayed high. We identified eight potential degradation products of lincomycin, occurring primarily via hydroxylation, N-demethylation, and amide hydrolysis. Additionally, lincomycin notably increased the abundances of specific antibiotic-resistant bacteria (e.g., <em>Thiobacillus</em>, 8.3-fold) and ammonia-oxidizing archaea (e.g., <em>Nitrososphaera</em>, 46.8-fold). The β-lactam resistance gene in <em>Thiobacillus</em> and the <em>amo</em>A gene in <em>Nitrososphaera</em> may enhance lincomycin’s removal by promoting its hydrolysis and hydroxylation. Overall, this study provides insights into OMP biodegradation mechanisms and the impact of ng/L levels of lincomycin on microbial communities.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"53 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136950","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Riverbank filtration (RBF) is an effective pretreatment technology for drinking water, removing organic micropollutants (OMPs) mainly through biodegradation. Despite documented improvements in OMP removal with extended adaptation time, the mechanisms remain poorly understood. This study assessed the removal of 128 OMPs over 82 d in a simulated RBF system, identified those with improved removal, and analyzed their properties. Additionally, microbial community shifts after 400 d of lincomycin exposure were studied to understand the underlying mechanisms. We found that the removal efficiencies of 24 OMPs, including lincomycin and fluconazole, improved by 3–77% over 82 d while being positively correlated with the presence of tertiary amides and secondary sulfonamides. Lincomycin removal efficiency rose from 20% to 95% over 68 days and stayed high. We identified eight potential degradation products of lincomycin, occurring primarily via hydroxylation, N-demethylation, and amide hydrolysis. Additionally, lincomycin notably increased the abundances of specific antibiotic-resistant bacteria (e.g., Thiobacillus, 8.3-fold) and ammonia-oxidizing archaea (e.g., Nitrososphaera, 46.8-fold). The β-lactam resistance gene in Thiobacillus and the amoA gene in Nitrososphaera may enhance lincomycin’s removal by promoting its hydrolysis and hydroxylation. Overall, this study provides insights into OMP biodegradation mechanisms and the impact of ng/L levels of lincomycin on microbial communities.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.