Enhancing the Tribological Performance of MAO Coatings through Hydrostatic Extrusion of cp-Ti

IF 5.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Ł. Maj, F. Muhaffel, A. Jarzębska, A. Trelka, K. Trembecka-Wójciga, J. Kawałko, M. Kulczyk, M. Bieda, H. Çimenoğlu
{"title":"Enhancing the Tribological Performance of MAO Coatings through Hydrostatic Extrusion of cp-Ti","authors":"Ł. Maj, F. Muhaffel, A. Jarzębska, A. Trelka, K. Trembecka-Wójciga, J. Kawałko, M. Kulczyk, M. Bieda, H. Çimenoğlu","doi":"10.1016/j.jallcom.2024.178246","DOIUrl":null,"url":null,"abstract":"This study investigates the influence of plastic deformation of commercially pure titanium (cp-Ti) substrates on the tribological performance of micro-arc oxidation (MAO) coatings. Hydrostatic extrusion (HE) was employed to refine the microstructure of cp-Ti, producing ultrafine-grained (UFG) titanium, which was compared with coarse-grained (CG) cp-Ti. Both substrates were subjected to the MAO process, and the fabricated MAO coatings were analysed through X-ray diffraction (XRD), electron microscopy techniques (SEM and TEM), energy dispersive spectrometry, atomic force microscopy (AFM), and tribological testing (hardness, scratch and wear tests). The results show that HE-treated cp-Ti substrates promoted faster and thicker MAO coating formation, with superior adhesion and tribological properties compared to CG cp-Ti. The UFG substrate led to increased hardness and wear resistance, largely due to the higher density of grain boundaries and electrical resistance of the substrate, which accelerated oxide layer growth. It has been demonstrated that plastic deformation of the substrate via HE significantly enhances the performance of MAO coatings, providing improved surface protection for biomedical applications.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"31 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2024.178246","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the influence of plastic deformation of commercially pure titanium (cp-Ti) substrates on the tribological performance of micro-arc oxidation (MAO) coatings. Hydrostatic extrusion (HE) was employed to refine the microstructure of cp-Ti, producing ultrafine-grained (UFG) titanium, which was compared with coarse-grained (CG) cp-Ti. Both substrates were subjected to the MAO process, and the fabricated MAO coatings were analysed through X-ray diffraction (XRD), electron microscopy techniques (SEM and TEM), energy dispersive spectrometry, atomic force microscopy (AFM), and tribological testing (hardness, scratch and wear tests). The results show that HE-treated cp-Ti substrates promoted faster and thicker MAO coating formation, with superior adhesion and tribological properties compared to CG cp-Ti. The UFG substrate led to increased hardness and wear resistance, largely due to the higher density of grain boundaries and electrical resistance of the substrate, which accelerated oxide layer growth. It has been demonstrated that plastic deformation of the substrate via HE significantly enhances the performance of MAO coatings, providing improved surface protection for biomedical applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信