Antigen-presenting cell activation requires intrinsic and extrinsic STING signaling after the phagocytosis of DNA-damaged cells

IF 17.6 1区 医学 Q1 IMMUNOLOGY
Seongji Park, Jeonghyun Ahn, Glen N. Barber
{"title":"Antigen-presenting cell activation requires intrinsic and extrinsic STING signaling after the phagocytosis of DNA-damaged cells","authors":"Seongji Park, Jeonghyun Ahn, Glen N. Barber","doi":"10.1126/sciimmunol.adk7812","DOIUrl":null,"url":null,"abstract":"Antigen-presenting cells (APCs) are readily activated after phagocytosing infected or DNA-damaged cells but not normal apoptotic cells for reasons that are not well understood. Here, we demonstrate that after DNA damage events, cytosolic dsDNA species trigger intrinsic STING signaling and the production of key immunogenic proteins, including CCL5, which renders such cells capable of APC activation upon phagocytosis. These events involve the generation of immunogenic STING-inducible endosomal vesicles (SIEVEs) additionally comprising critical autophagy-associated proteins associated with cytosolic DNA species. After phagocytosis, extrinsic cGAS-STING signaling is triggered via engulfed, immunogenic transactivating DNA vesicles resulting in APC stimulation. These results help explain how APCs are predominantly activated by DNA-damaged or infected cells in contrast with normal apoptotic cells and suggest that reconstitution of STING signaling or key inducible genes in cGAS-STING–defective malignancies could substantially augment cancer immunotherapies.","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"24 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1126/sciimmunol.adk7812","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Antigen-presenting cells (APCs) are readily activated after phagocytosing infected or DNA-damaged cells but not normal apoptotic cells for reasons that are not well understood. Here, we demonstrate that after DNA damage events, cytosolic dsDNA species trigger intrinsic STING signaling and the production of key immunogenic proteins, including CCL5, which renders such cells capable of APC activation upon phagocytosis. These events involve the generation of immunogenic STING-inducible endosomal vesicles (SIEVEs) additionally comprising critical autophagy-associated proteins associated with cytosolic DNA species. After phagocytosis, extrinsic cGAS-STING signaling is triggered via engulfed, immunogenic transactivating DNA vesicles resulting in APC stimulation. These results help explain how APCs are predominantly activated by DNA-damaged or infected cells in contrast with normal apoptotic cells and suggest that reconstitution of STING signaling or key inducible genes in cGAS-STING–defective malignancies could substantially augment cancer immunotherapies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Immunology
Science Immunology Immunology and Microbiology-Immunology
CiteScore
32.90
自引率
2.00%
发文量
183
期刊介绍: Science Immunology is a peer-reviewed journal that publishes original research articles in the field of immunology. The journal encourages the submission of research findings from all areas of immunology, including studies on innate and adaptive immunity, immune cell development and differentiation, immunogenomics, systems immunology, structural immunology, antigen presentation, immunometabolism, and mucosal immunology. Additionally, the journal covers research on immune contributions to health and disease, such as host defense, inflammation, cancer immunology, autoimmunity, allergy, transplantation, and immunodeficiency. Science Immunology maintains the same high-quality standard as other journals in the Science family and aims to facilitate understanding of the immune system by showcasing innovative advances in immunology research from all organisms and model systems, including humans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信