Taiseer Hussain Nafea, Faith Ka Shun Chan, Yuyao Xu, Hang Xiao, Jun He
{"title":"Unveiling the Seasonal Transport and Exposure Risks of Atmospheric Microplastics in the Southern Area of the Yangtze River Delta, China","authors":"Taiseer Hussain Nafea, Faith Ka Shun Chan, Yuyao Xu, Hang Xiao, Jun He","doi":"10.1016/j.envpol.2024.125567","DOIUrl":null,"url":null,"abstract":"This study investigates the prevalence and impacts of suspended atmospheric microplastics (SAMPs) in the coastal metropolitan city of Ningbo in the Yangtze River Delta Region, China. The sampling was conducted at both urban centre and urban-rural fringe areas, near the coast but distant from large urban populations. SAMP abundance ranged from 0.017 to 0.430 items m<sup>-</sup>³, with an average of 0.145±0.09 items m⁻³. The urban centre exhibited approximately 70% more SAMPs than the urban-rural fringe, highlighting the influence of population density and human activity on microplastic pollution. Fibres dominated SAMP composition at both sites, while urban samples featured a greater variety of microplastic forms, such as fragments, beads, and films. Rayon and Polyethylene terephthalate were the predominant polymers, which were found to be directly related to local industrial activities. SAMPs ranged in size from 20 μm to 4,984.4 μm, with over 60% smaller than 1,000 μm. Seasonal variation followed a winter>autumn>spring>summer pattern. Correlation and principal component analyses identified atmospheric temperature, pressure, wind speed, and rainfall as key factors influencing SAMP abundance. Notably, backward trajectory analysis showed that oceanic air masses carried significantly fewer SAMPs compared to terrestrial air, diluting concentrations in coastal regions. Annually, an estimated 4.67 × 10<sup>1</sup>³ microplastics are suspended over Ningbo. This is the first comprehensive study of SAMP pollution in this region, revealing interactions between local sources, environmental variations, air mass dynamics, and exposure. The findings underscore the need for targeted strategies to mitigate atmospheric microplastic pollution in coastal urban environments.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"31 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envpol.2024.125567","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the prevalence and impacts of suspended atmospheric microplastics (SAMPs) in the coastal metropolitan city of Ningbo in the Yangtze River Delta Region, China. The sampling was conducted at both urban centre and urban-rural fringe areas, near the coast but distant from large urban populations. SAMP abundance ranged from 0.017 to 0.430 items m-³, with an average of 0.145±0.09 items m⁻³. The urban centre exhibited approximately 70% more SAMPs than the urban-rural fringe, highlighting the influence of population density and human activity on microplastic pollution. Fibres dominated SAMP composition at both sites, while urban samples featured a greater variety of microplastic forms, such as fragments, beads, and films. Rayon and Polyethylene terephthalate were the predominant polymers, which were found to be directly related to local industrial activities. SAMPs ranged in size from 20 μm to 4,984.4 μm, with over 60% smaller than 1,000 μm. Seasonal variation followed a winter>autumn>spring>summer pattern. Correlation and principal component analyses identified atmospheric temperature, pressure, wind speed, and rainfall as key factors influencing SAMP abundance. Notably, backward trajectory analysis showed that oceanic air masses carried significantly fewer SAMPs compared to terrestrial air, diluting concentrations in coastal regions. Annually, an estimated 4.67 × 101³ microplastics are suspended over Ningbo. This is the first comprehensive study of SAMP pollution in this region, revealing interactions between local sources, environmental variations, air mass dynamics, and exposure. The findings underscore the need for targeted strategies to mitigate atmospheric microplastic pollution in coastal urban environments.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.