Yan Liu, Yang Wang, Rajesh A. Kulkarni, Lindsay Anne Wegiel, Byungkook Lee, Sean K. Bedingfield, David Weitz
{"title":"Syringable Microcapsules for Sustained, Localized, and Controllable siRNA Delivery","authors":"Yan Liu, Yang Wang, Rajesh A. Kulkarni, Lindsay Anne Wegiel, Byungkook Lee, Sean K. Bedingfield, David Weitz","doi":"10.1021/acsami.4c12805","DOIUrl":null,"url":null,"abstract":"The clinical use of small interfering RNA (siRNA) and antisense oligonucleotides often requires invasive routes of administration, including intrathecal or intraocular injection. Additionally, these treatments often necessitate repeated injections. While nanoparticle formulation and chemical modifications have extended siRNA therapeutic durability, challenges persist, such as the side effects of bolus injections with high toxicity and maximum exposure in the acute phase. We present a microcapsule-based method to extend the activity of cholesterol-conjugated siRNA locally. Using microfluidics, microcapsules with well-defined size distribution and shell thickness are fabricated with poly(lactic-<i>co</i>-glycolic acid) (PLGA) with varying molecular weights and compositions. The microcapsules show a remarkably high drug encapsulation efficiency of nearly 100% and a high loading capacity (8900 μg siRNA/1 mg polymer). Additionally, microcapsules with an average diameter of 40 μm show superior syringeability when tested with needles ranging from gauge sizes of 27 to 32 G. This makes them suitable for various injection routes. Two sustained-release formulations were selected based on a 3-month in vitro release test. Subsequently, these formulations were injected subcutaneously into mice to verify their in vivo release profiles. The findings demonstrate that the microcapsules effectively shield the siRNAs from being cleared and enable them to be released constantly over 3 months. In contrast, unencapsulated siRNAs are rapidly cleared.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"19 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c12805","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The clinical use of small interfering RNA (siRNA) and antisense oligonucleotides often requires invasive routes of administration, including intrathecal or intraocular injection. Additionally, these treatments often necessitate repeated injections. While nanoparticle formulation and chemical modifications have extended siRNA therapeutic durability, challenges persist, such as the side effects of bolus injections with high toxicity and maximum exposure in the acute phase. We present a microcapsule-based method to extend the activity of cholesterol-conjugated siRNA locally. Using microfluidics, microcapsules with well-defined size distribution and shell thickness are fabricated with poly(lactic-co-glycolic acid) (PLGA) with varying molecular weights and compositions. The microcapsules show a remarkably high drug encapsulation efficiency of nearly 100% and a high loading capacity (8900 μg siRNA/1 mg polymer). Additionally, microcapsules with an average diameter of 40 μm show superior syringeability when tested with needles ranging from gauge sizes of 27 to 32 G. This makes them suitable for various injection routes. Two sustained-release formulations were selected based on a 3-month in vitro release test. Subsequently, these formulations were injected subcutaneously into mice to verify their in vivo release profiles. The findings demonstrate that the microcapsules effectively shield the siRNAs from being cleared and enable them to be released constantly over 3 months. In contrast, unencapsulated siRNAs are rapidly cleared.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.