Multiple aptamer recognition-based quantum dot lateral flow platform: ultrasensitive point-of-care testing of respiratory infectious diseases.

Hengxuan Li, Xiaoyi Fu, Qimin You, Dawei Shi, Lingxuan Su, Minghui Song, Ruizi Peng, Ting Fu, Peng Wang, Weihong Tan
{"title":"Multiple aptamer recognition-based quantum dot lateral flow platform: ultrasensitive point-of-care testing of respiratory infectious diseases.","authors":"Hengxuan Li, Xiaoyi Fu, Qimin You, Dawei Shi, Lingxuan Su, Minghui Song, Ruizi Peng, Ting Fu, Peng Wang, Weihong Tan","doi":"10.1039/d4tb01946f","DOIUrl":null,"url":null,"abstract":"<p><p>Respiratory infectious diseases spread rapidly and have a wide range of impacts, posing a serious threat to public health security. The development of a sensitive, accurate, and rapid detection method for respiratory viruses is crucial for disease prevention and control. However, existing methods are inadequate in satisfying the demand for accurate and convenient detection simultaneously. Therefore, an ultrasensitive point-of-care testing (POCT) platform based on a multiple aptamer recognition-based quantum dot lateral flow immunoassay (MARQ-LFIA) was developed in this work. This platform consisted of multiple high-affinity aptamers for recognizing different sites on a respiratory infectious virus protein, enhancing the efficiency of virus identification in complex environments. By combining a multiple aptamer recognition strategy with quantum dot fluorescent technique to construct LFIA test strips and pairing them with a high-gain portable fluorescence reader, excellent detection sensitivity and specificity were achieved in the case of coronavirus disease 2019 (COVID-19). The limits of detection were 1.427 pg mL<sup>-1</sup> and 1643 U mL<sup>-1</sup> towards the nucleocapsid protein and inactivated viruses, respectively, indicating that MARQ-LFIA improved detection sensitivity compared to reported methods. More critically, by testing thirty COVID-19 positive and twenty negative patient samples, the positive detection rate increased from 55.17% to 86.67% compared with commercially similar products. The universality of MARQ-LFIA was also investigated for diagnosing influenza B. We believe that MARQ-LFIA can be a promising POCT tool with potential applications in the areas of public health for the growing demand for precision diagnosis and treatment.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4tb01946f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Respiratory infectious diseases spread rapidly and have a wide range of impacts, posing a serious threat to public health security. The development of a sensitive, accurate, and rapid detection method for respiratory viruses is crucial for disease prevention and control. However, existing methods are inadequate in satisfying the demand for accurate and convenient detection simultaneously. Therefore, an ultrasensitive point-of-care testing (POCT) platform based on a multiple aptamer recognition-based quantum dot lateral flow immunoassay (MARQ-LFIA) was developed in this work. This platform consisted of multiple high-affinity aptamers for recognizing different sites on a respiratory infectious virus protein, enhancing the efficiency of virus identification in complex environments. By combining a multiple aptamer recognition strategy with quantum dot fluorescent technique to construct LFIA test strips and pairing them with a high-gain portable fluorescence reader, excellent detection sensitivity and specificity were achieved in the case of coronavirus disease 2019 (COVID-19). The limits of detection were 1.427 pg mL-1 and 1643 U mL-1 towards the nucleocapsid protein and inactivated viruses, respectively, indicating that MARQ-LFIA improved detection sensitivity compared to reported methods. More critically, by testing thirty COVID-19 positive and twenty negative patient samples, the positive detection rate increased from 55.17% to 86.67% compared with commercially similar products. The universality of MARQ-LFIA was also investigated for diagnosing influenza B. We believe that MARQ-LFIA can be a promising POCT tool with potential applications in the areas of public health for the growing demand for precision diagnosis and treatment.

基于多种适配体识别的量子点横向流动平台:呼吸道传染病的超灵敏床旁检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of materials chemistry. B
Journal of materials chemistry. B 化学科学, 工程与材料, 生命科学, 分析化学, 高分子组装与超分子结构, 高分子科学, 免疫生物学, 免疫学, 生化分析及生物传感, 组织工程学, 生物力学与组织工程学, 资源循环科学, 冶金与矿业, 生物医用高分子材料, 有机高分子材料, 金属材料的制备科学与跨学科应用基础, 金属材料, 样品前处理方法与技术, 有机分子功能材料化学, 有机化学
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信