Crop genome editing through tissue-culture-independent transformation methods.

IF 4.9 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Frontiers in genome editing Pub Date : 2024-12-05 eCollection Date: 2024-01-01 DOI:10.3389/fgeed.2024.1490295
Alejandro Sebiani-Calvo, Alejandro Hernández-Soto, Götz Hensel, Andrés Gatica-Arias
{"title":"Crop genome editing through tissue-culture-independent transformation methods.","authors":"Alejandro Sebiani-Calvo, Alejandro Hernández-Soto, Götz Hensel, Andrés Gatica-Arias","doi":"10.3389/fgeed.2024.1490295","DOIUrl":null,"url":null,"abstract":"<p><p>Genome editing and plant transformation are crucial techniques in plant biotechnology, allowing for the precise modification of plant genomes to enhance agronomically essential traits. The advancement of CRISPR-based genome editing tools in plants is limited, among others, by developing novel <i>in vitro</i> tissue culture methodologies for efficient plant genetic transformation. <i>In-planta</i> methodologies offer a promising alternative to overcome tissue culture limitations and facilitate crops' genetic improvement. The <i>in-planta</i> transformation methods can be categorized under the definition of means of plant genetic transformation with no or minimal tissue culture steps meeting the conditions for minimal steps: short duration with a limited number of transfers, high technical simplicity, limited list of hormones, and that the regeneration does not undergo callus development. In this review, we analyzed over 250 articles. We identified studies that follow an <i>in-planta</i> transformation methodology for delivering CRISPR/Cas9 components focusing on crop plants, as model species have been previously reviewed in detail. This approach has been successfully applied for genome editing in crop plants: camelina, cotton, lemon, melon, orange, peanut, rice, soybean, and wheat. Overall, this study underscores the importance of <i>in-planta</i> methodologies in overcoming the limitations of tissue culture and advancing the field of plant genome editing.</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":"6 ","pages":"1490295"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655202/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in genome editing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fgeed.2024.1490295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Genome editing and plant transformation are crucial techniques in plant biotechnology, allowing for the precise modification of plant genomes to enhance agronomically essential traits. The advancement of CRISPR-based genome editing tools in plants is limited, among others, by developing novel in vitro tissue culture methodologies for efficient plant genetic transformation. In-planta methodologies offer a promising alternative to overcome tissue culture limitations and facilitate crops' genetic improvement. The in-planta transformation methods can be categorized under the definition of means of plant genetic transformation with no or minimal tissue culture steps meeting the conditions for minimal steps: short duration with a limited number of transfers, high technical simplicity, limited list of hormones, and that the regeneration does not undergo callus development. In this review, we analyzed over 250 articles. We identified studies that follow an in-planta transformation methodology for delivering CRISPR/Cas9 components focusing on crop plants, as model species have been previously reviewed in detail. This approach has been successfully applied for genome editing in crop plants: camelina, cotton, lemon, melon, orange, peanut, rice, soybean, and wheat. Overall, this study underscores the importance of in-planta methodologies in overcoming the limitations of tissue culture and advancing the field of plant genome editing.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信