Effects of granule disintegration and re-granulation on the physiological characteristics and microbial diversity of anammox granules.

Sohee Jeong, Victory Fiifi Dsane, Younggyun Choi
{"title":"Effects of granule disintegration and re-granulation on the physiological characteristics and microbial diversity of anammox granules.","authors":"Sohee Jeong, Victory Fiifi Dsane, Younggyun Choi","doi":"10.1016/j.chemosphere.2024.143979","DOIUrl":null,"url":null,"abstract":"<p><p>The impact of artificial disintegration and re-granulation of anammox granules on the granule size, Extra-cellular Polymeric Substances (EPS) composition, microbial community characteristics, and the performance of the anammox process was investigated. Before the granule disintegration, the Dv50 and Granulation Index (GI) were 1280 μm and 54.62%, respectively. Following two cycles of disintegration and re-granulation process, these values shifted to 463 μm and 81.53%, respectively. This indicates that the disintegration and re-granulation process helped to form denser particles. The reduction in total EPS content and the increase in the PS/PN ratio of EPS well reflect these particle characteristics. Additionally, the disintegration and re-granulation process increased the dominance of Kuenenia Stuttgartiensis, which is well adapted to high salinity (2%) conditions, from 11.2% to 68.1%. By artificially disintegrating the granules and inducing re-granulation, it was possible to increase the dominance of specific anammox microorganisms with enhanced resilience of the anammox process.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"143979"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chemosphere.2024.143979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The impact of artificial disintegration and re-granulation of anammox granules on the granule size, Extra-cellular Polymeric Substances (EPS) composition, microbial community characteristics, and the performance of the anammox process was investigated. Before the granule disintegration, the Dv50 and Granulation Index (GI) were 1280 μm and 54.62%, respectively. Following two cycles of disintegration and re-granulation process, these values shifted to 463 μm and 81.53%, respectively. This indicates that the disintegration and re-granulation process helped to form denser particles. The reduction in total EPS content and the increase in the PS/PN ratio of EPS well reflect these particle characteristics. Additionally, the disintegration and re-granulation process increased the dominance of Kuenenia Stuttgartiensis, which is well adapted to high salinity (2%) conditions, from 11.2% to 68.1%. By artificially disintegrating the granules and inducing re-granulation, it was possible to increase the dominance of specific anammox microorganisms with enhanced resilience of the anammox process.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信