Emerging approaches for T cell-stimulating platform development.

Emily Ariail, Nikol Garcia Espinoza, A Carson Stephenson, Jamie B Spangler
{"title":"Emerging approaches for T cell-stimulating platform development.","authors":"Emily Ariail, Nikol Garcia Espinoza, A Carson Stephenson, Jamie B Spangler","doi":"10.1016/j.cels.2024.11.007","DOIUrl":null,"url":null,"abstract":"<p><p>T cells are key mediators of the adaptive immune response, playing both direct and supporting roles in the destruction of foreign pathogenic threats as well as pathologically transformed host cells. The natural process through which T cells are activated requires coordinated molecular interactions between antigen-presenting cells and T cells. Promising advances in biomaterial design have catalyzed the development of artificial platforms that mimic the natural process of T cell stimulation, both to bolster the performance of cell therapies by activating T cells ex vivo prior to adoptive cell transfer and to directly activate T cells in vivo as off-the-shelf treatments. This review focuses on innovative strategies in T cell-stimulating platform design for applications in cancer therapy. We specifically highlight progress in bead-based artificial antigen-presenting cell engineering, hydrogel-based scaffolds, DNA-based systems, alternative polymeric strategies, and soluble activation approaches. Collectively, these advances are expanding the repertoire of tools for targeted immune activation.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":"15 12","pages":"1198-1208"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2024.11.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

T cells are key mediators of the adaptive immune response, playing both direct and supporting roles in the destruction of foreign pathogenic threats as well as pathologically transformed host cells. The natural process through which T cells are activated requires coordinated molecular interactions between antigen-presenting cells and T cells. Promising advances in biomaterial design have catalyzed the development of artificial platforms that mimic the natural process of T cell stimulation, both to bolster the performance of cell therapies by activating T cells ex vivo prior to adoptive cell transfer and to directly activate T cells in vivo as off-the-shelf treatments. This review focuses on innovative strategies in T cell-stimulating platform design for applications in cancer therapy. We specifically highlight progress in bead-based artificial antigen-presenting cell engineering, hydrogel-based scaffolds, DNA-based systems, alternative polymeric strategies, and soluble activation approaches. Collectively, these advances are expanding the repertoire of tools for targeted immune activation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信