Regeneration of PFAS-laden granular activated carbon by modified supercritical CO2 extraction.

Tatiana Didenko, Almond Lau, Anmol L Purohit, Ji Feng, Brian Pinkard, Mohamed Ateia, Igor V Novosselov
{"title":"Regeneration of PFAS-laden granular activated carbon by modified supercritical CO<sub>2</sub> extraction.","authors":"Tatiana Didenko, Almond Lau, Anmol L Purohit, Ji Feng, Brian Pinkard, Mohamed Ateia, Igor V Novosselov","doi":"10.1016/j.chemosphere.2024.143986","DOIUrl":null,"url":null,"abstract":"<p><p>Granular activated carbon (GAC) is widely used to treat contaminated per- and polyfluoroalkyl substances (PFAS) waste streams, resulting in the accumulation of large quantities of spent GAC that need to be landfilled or regenerated. A novel modified supercritical CO<sub>2</sub> (scCO<sub>2</sub>) extraction for regeneration of spent GAC is developed. With the addition of organic solvents and acid modifiers, the procedure yielded >99% perfluorooctanoic acid (PFOA) desorption after a 60-min treatment in a continuous flow reactor. The mild extraction conditions at T ∼100 °C do not trigger the formation of volatile organic fluorine or changes in GAC sorbent properties. Mechanistically, the high miscibility of co-solvent/scCO<sub>2</sub> eliminates diffusion transport limitations, enabling rapid reagent and PFAS transport in a single-phase (gas-like) medium. The introduction of organic co-solvent and the absence of water reverses hydrophobic interactions between GAC and the PFAS. The acid modifier minimizes the electrostatic PFOA/GAC interactions by protonating the perfluorooctanoate ion and providing competition for active GAC sites. The approach offers an economically effective regeneration scheme, enabling the reuse of sorbents and yielding effluent with a high loading of PFAS that is amenable to subsequent end-of-life treatment technologies.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"143986"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chemosphere.2024.143986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Granular activated carbon (GAC) is widely used to treat contaminated per- and polyfluoroalkyl substances (PFAS) waste streams, resulting in the accumulation of large quantities of spent GAC that need to be landfilled or regenerated. A novel modified supercritical CO2 (scCO2) extraction for regeneration of spent GAC is developed. With the addition of organic solvents and acid modifiers, the procedure yielded >99% perfluorooctanoic acid (PFOA) desorption after a 60-min treatment in a continuous flow reactor. The mild extraction conditions at T ∼100 °C do not trigger the formation of volatile organic fluorine or changes in GAC sorbent properties. Mechanistically, the high miscibility of co-solvent/scCO2 eliminates diffusion transport limitations, enabling rapid reagent and PFAS transport in a single-phase (gas-like) medium. The introduction of organic co-solvent and the absence of water reverses hydrophobic interactions between GAC and the PFAS. The acid modifier minimizes the electrostatic PFOA/GAC interactions by protonating the perfluorooctanoate ion and providing competition for active GAC sites. The approach offers an economically effective regeneration scheme, enabling the reuse of sorbents and yielding effluent with a high loading of PFAS that is amenable to subsequent end-of-life treatment technologies.

通过改良超临界二氧化碳萃取法再生含有全氟辛烷磺酸的颗粒活性炭。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信