Maryam Asadikorayem, Patrick Weber, Shipin Zhang, František Surman, David Fercher, Marina Fonti, Kajetana Bevc, Sami Kauppinen, Tuomas Frondelius, Mikko A J Finnilä, Marcy Zenobi-Wong
{"title":"In-situ-forming zwitterionic hydrogel does not ameliorate osteoarthritis in vivo, despite protective effects ex vivo.","authors":"Maryam Asadikorayem, Patrick Weber, Shipin Zhang, František Surman, David Fercher, Marina Fonti, Kajetana Bevc, Sami Kauppinen, Tuomas Frondelius, Mikko A J Finnilä, Marcy Zenobi-Wong","doi":"10.1016/j.bioadv.2024.214151","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis (OA) is one of the most common degenerative joint diseases, with no effective therapeutic options available. In this study, we aimed to develop an interpenetrating, in-situ-forming hydrogel based on biocompatible and anti-fouling zwitterionic (ZI) polymers for early-stage OA treatment. We hypothesized that the anti-fouling properties of zwitterions could provide tissue protection, and the high charge density of these polymers would enhance tissue penetration and lubrication. The hydrogel comprises carboxybetaine acrylamide as the ZI backbone and tyramine acrylamide as a functional comonomer to enable enzymatic and tissue-adhesive crosslinking. The hydrogel demonstrated exceptional tissue penetration and long-term retention in bovine cartilage explants. Moreover, hydrogel application protected cartilage in inflammatory media, enhanced lubrication, and decreased permeability. However, ZI hydrogel injection in collagenase-induced osteoarthritis model in rats did not prevent cartilage degeneration, and similar levels of tissue degradation and surface roughness were observed in rats injected with the ZI hydrogel and in OA controls. Additionally, ZI polymer without in-situ crosslinking resulted in increased cartilage degradation compared to both hydrogel and OA control. Furthermore, synovial tissue inflammation and significantly increased immune cell infiltration were observed in response to ZI materials. This study highlights the potential immunogenicity effect of ZI polymers in our disease model, contributing to impaired protective effects as well as exacerbated degeneration.</p>","PeriodicalId":51111,"journal":{"name":"Materials Science & Engineering C-Materials for Biological Applications","volume":"169 ","pages":"214151"},"PeriodicalIF":5.5000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science & Engineering C-Materials for Biological Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bioadv.2024.214151","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Osteoarthritis (OA) is one of the most common degenerative joint diseases, with no effective therapeutic options available. In this study, we aimed to develop an interpenetrating, in-situ-forming hydrogel based on biocompatible and anti-fouling zwitterionic (ZI) polymers for early-stage OA treatment. We hypothesized that the anti-fouling properties of zwitterions could provide tissue protection, and the high charge density of these polymers would enhance tissue penetration and lubrication. The hydrogel comprises carboxybetaine acrylamide as the ZI backbone and tyramine acrylamide as a functional comonomer to enable enzymatic and tissue-adhesive crosslinking. The hydrogel demonstrated exceptional tissue penetration and long-term retention in bovine cartilage explants. Moreover, hydrogel application protected cartilage in inflammatory media, enhanced lubrication, and decreased permeability. However, ZI hydrogel injection in collagenase-induced osteoarthritis model in rats did not prevent cartilage degeneration, and similar levels of tissue degradation and surface roughness were observed in rats injected with the ZI hydrogel and in OA controls. Additionally, ZI polymer without in-situ crosslinking resulted in increased cartilage degradation compared to both hydrogel and OA control. Furthermore, synovial tissue inflammation and significantly increased immune cell infiltration were observed in response to ZI materials. This study highlights the potential immunogenicity effect of ZI polymers in our disease model, contributing to impaired protective effects as well as exacerbated degeneration.
期刊介绍:
Biomaterials Advances, previously known as Materials Science and Engineering: C-Materials for Biological Applications (P-ISSN: 0928-4931, E-ISSN: 1873-0191). Includes topics at the interface of the biomedical sciences and materials engineering. These topics include:
• Bioinspired and biomimetic materials for medical applications
• Materials of biological origin for medical applications
• Materials for "active" medical applications
• Self-assembling and self-healing materials for medical applications
• "Smart" (i.e., stimulus-response) materials for medical applications
• Ceramic, metallic, polymeric, and composite materials for medical applications
• Materials for in vivo sensing
• Materials for in vivo imaging
• Materials for delivery of pharmacologic agents and vaccines
• Novel approaches for characterizing and modeling materials for medical applications
Manuscripts on biological topics without a materials science component, or manuscripts on materials science without biological applications, will not be considered for publication in Materials Science and Engineering C. New submissions are first assessed for language, scope and originality (plagiarism check) and can be desk rejected before review if they need English language improvements, are out of scope or present excessive duplication with published sources.
Biomaterials Advances sits within Elsevier''s biomaterials science portfolio alongside Biomaterials, Materials Today Bio and Biomaterials and Biosystems. As part of the broader Materials Today family, Biomaterials Advances offers authors rigorous peer review, rapid decisions, and high visibility. We look forward to receiving your submissions!