{"title":"Text-guided Image Restoration and Semantic Enhancement for Text-to-Image Person Retrieval.","authors":"Delong Liu, Haiwen Li, Zhicheng Zhao, Yuan Dong","doi":"10.1016/j.neunet.2024.107028","DOIUrl":null,"url":null,"abstract":"<p><p>The goal of Text-to-Image Person Retrieval (TIPR) is to retrieve specific person images according to the given textual descriptions. A primary challenge in this task is bridging the substantial representational gap between visual and textual modalities. The prevailing methods map texts and images into unified embedding space for matching, while the intricate semantic correspondences between texts and images are still not effectively constructed. To address this issue, we propose a novel TIPR framework to build fine-grained interactions and alignment between person images and the corresponding texts. Specifically, via fine-tuning the Contrastive Language-Image Pre-training (CLIP) model, a visual-textual dual encoder is firstly constructed, to preliminarily align the image and text features. Secondly, a Text-guided Image Restoration (TIR) auxiliary task is proposed to map abstract textual entities to specific image regions, improving the alignment between local textual and visual embeddings. Additionally, a cross-modal triplet loss is presented to handle hard samples, and further enhance the model's discriminability for minor differences. Moreover, a pruning-based text data augmentation approach is proposed to enhance focus on essential elements in descriptions, thereby avoiding excessive model attention to less significant information. The experimental results show our proposed method outperforms state-of-the-art methods on three popular benchmark datasets, and the code will be made publicly available at https://github.com/Delong-liu-bupt/SEN.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"184 ","pages":"107028"},"PeriodicalIF":6.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2024.107028","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The goal of Text-to-Image Person Retrieval (TIPR) is to retrieve specific person images according to the given textual descriptions. A primary challenge in this task is bridging the substantial representational gap between visual and textual modalities. The prevailing methods map texts and images into unified embedding space for matching, while the intricate semantic correspondences between texts and images are still not effectively constructed. To address this issue, we propose a novel TIPR framework to build fine-grained interactions and alignment between person images and the corresponding texts. Specifically, via fine-tuning the Contrastive Language-Image Pre-training (CLIP) model, a visual-textual dual encoder is firstly constructed, to preliminarily align the image and text features. Secondly, a Text-guided Image Restoration (TIR) auxiliary task is proposed to map abstract textual entities to specific image regions, improving the alignment between local textual and visual embeddings. Additionally, a cross-modal triplet loss is presented to handle hard samples, and further enhance the model's discriminability for minor differences. Moreover, a pruning-based text data augmentation approach is proposed to enhance focus on essential elements in descriptions, thereby avoiding excessive model attention to less significant information. The experimental results show our proposed method outperforms state-of-the-art methods on three popular benchmark datasets, and the code will be made publicly available at https://github.com/Delong-liu-bupt/SEN.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.