Scutellariae Radix Ameliorates Prenatal Stress Induced Anxiety-like and Depression-like Behavior in the Offspring via Reversing HPA Axis Hyperfunction and Ameliorating Neurodevelopmental Dysfunction.

IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY
Lixia Li, Wenying Zhang, Congying Sun, Zhiqiang Chai, Kaiyue Wang, Qian Zhou, Xiaoying Wang
{"title":"Scutellariae Radix Ameliorates Prenatal Stress Induced Anxiety-like and Depression-like Behavior in the Offspring via Reversing HPA Axis Hyperfunction and Ameliorating Neurodevelopmental Dysfunction.","authors":"Lixia Li, Wenying Zhang, Congying Sun, Zhiqiang Chai, Kaiyue Wang, Qian Zhou, Xiaoying Wang","doi":"10.1159/000543152","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>This study aimed to explore the impact and mechanism of Scutellariae radix (SR), dried root of Scutellaria baicalensis Georgi of Labiatae, on prenatal stress (PS) induced anxiety-like and depression-like behavior in the offspring in a mouse prenatal stress model.</p><p><strong>Methods: </strong>The open field test (OFT), tail suspension test (TST), and forced swimming test (FST) were utilized to assess the behavior of the offspring. Histological changes were evaluated using HE staining and Nissl staining. ELISA was employed to detect the levels of related factors in the serum and fetal brains of offspring mice. Immunohistochemistry was used to determine the expressions of doublecortin and neurotrophic factors in the hippocampus, and RT-PCR reflected the expression of factors in the hippocampus and placenta of offspring mice. These various techniques collectively provided insight into the neurodevelopmental status by detecting indicators related to neurodevelopmental status. LC-MS/MS and molecular docking were used to clarify the chemical constituents and the pharmacodynamic components in Scutellariae radix.</p><p><strong>Results: </strong>Scutellariae radix ameliorated prenatal stress-induced anxiety-like and depression-like behavior in the offspring. It also alleviated hippocampal neurogenesis impairment caused by prenatal stress and restored abnormal expression of hippocampal glutamate (Glu) and brain-derived neurotrophic factor in the offspring. Additionally, Scutellariae radix maintained normal 11β-HSD1 expression in the placenta of prenatal stress mice, ensuring a normal level of glucocorticoid (GC) and glucocorticoid receptors (GR) in the fetus. Furthermore, Scutellariae radix increased the mRNA expression of GR and 11β-HSD2 while decreasing the mRNA expression of 11β-HSD1, thereby normalizing levels of serum CRH, ACTH, and GC in the offspring. Finally, docking results indicated that baicalein, wogonin, wogonoside, and baicalin exhibited stronger binding ability with the target.</p><p><strong>Conclusion: </strong>The results of our study indicate that Scutellariae radix may have the potential to alleviate prenatal stress-induced anxiety-like and depression-like behaviors in offspring, at least partially through protecting placental barrier function, reversing HPA axis hyperfunction, and ameliorating neurodevelopmental dysfunction.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"1-27"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000543152","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: This study aimed to explore the impact and mechanism of Scutellariae radix (SR), dried root of Scutellaria baicalensis Georgi of Labiatae, on prenatal stress (PS) induced anxiety-like and depression-like behavior in the offspring in a mouse prenatal stress model.

Methods: The open field test (OFT), tail suspension test (TST), and forced swimming test (FST) were utilized to assess the behavior of the offspring. Histological changes were evaluated using HE staining and Nissl staining. ELISA was employed to detect the levels of related factors in the serum and fetal brains of offspring mice. Immunohistochemistry was used to determine the expressions of doublecortin and neurotrophic factors in the hippocampus, and RT-PCR reflected the expression of factors in the hippocampus and placenta of offspring mice. These various techniques collectively provided insight into the neurodevelopmental status by detecting indicators related to neurodevelopmental status. LC-MS/MS and molecular docking were used to clarify the chemical constituents and the pharmacodynamic components in Scutellariae radix.

Results: Scutellariae radix ameliorated prenatal stress-induced anxiety-like and depression-like behavior in the offspring. It also alleviated hippocampal neurogenesis impairment caused by prenatal stress and restored abnormal expression of hippocampal glutamate (Glu) and brain-derived neurotrophic factor in the offspring. Additionally, Scutellariae radix maintained normal 11β-HSD1 expression in the placenta of prenatal stress mice, ensuring a normal level of glucocorticoid (GC) and glucocorticoid receptors (GR) in the fetus. Furthermore, Scutellariae radix increased the mRNA expression of GR and 11β-HSD2 while decreasing the mRNA expression of 11β-HSD1, thereby normalizing levels of serum CRH, ACTH, and GC in the offspring. Finally, docking results indicated that baicalein, wogonin, wogonoside, and baicalin exhibited stronger binding ability with the target.

Conclusion: The results of our study indicate that Scutellariae radix may have the potential to alleviate prenatal stress-induced anxiety-like and depression-like behaviors in offspring, at least partially through protecting placental barrier function, reversing HPA axis hyperfunction, and ameliorating neurodevelopmental dysfunction.

黄芩通过逆转HPA轴功能亢进和改善神经发育功能障碍,改善产前压力诱发的后代焦虑样和抑郁样行为
摘要:本研究旨在探讨黄芩干根(Scutellaria baicalensis Georgi)对小鼠产前应激(PS)诱导的子代焦虑样和抑郁样行为的影响及其机制。方法:采用开阔场试验(OFT)、悬尾试验(TST)和强迫游泳试验(FST)对子代进行行为学评价。采用HE染色和尼氏染色评价组织学变化。采用ELISA法检测子代小鼠血清及胎脑中相关因子水平。免疫组化法检测海马双皮质素和神经营养因子的表达,RT-PCR反应子代小鼠海马和胎盘中因子的表达。这些不同的技术通过检测与神经发育状态相关的指标,共同提供了对神经发育状态的洞察。采用LC-MS/MS和分子对接等方法对黄芩的化学成分和药效学成分进行了研究。结果:黄芩能改善胎儿产前应激诱导的焦虑样和抑郁样行为。它还能减轻产前应激引起的海马神经发生损伤,恢复后代海马谷氨酸(Glu)和脑源性神经营养因子的异常表达。此外,黄芩还能维持产前应激小鼠胎盘中11β-HSD1的正常表达,从而保证胎儿体内糖皮质激素(GC)和糖皮质激素受体(GR)的正常水平。黄芩提高了GR和11β-HSD2 mRNA的表达,降低了11β-HSD1 mRNA的表达,从而使子代血清CRH、ACTH和GC水平正常化。最后,对接结果表明黄芩苷、枸杞苷、枸杞苷、黄芩苷与靶标的结合能力较强。结论:黄芩可能通过保护胎盘屏障功能、逆转HPA轴功能亢进、改善神经发育障碍等途径,缓解产前应激诱导的子代焦虑和抑郁样行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Developmental Neuroscience
Developmental Neuroscience 医学-发育生物学
CiteScore
4.00
自引率
3.40%
发文量
49
审稿时长
>12 weeks
期刊介绍: ''Developmental Neuroscience'' is a multidisciplinary journal publishing papers covering all stages of invertebrate, vertebrate and human brain development. Emphasis is placed on publishing fundamental as well as translational studies that contribute to our understanding of mechanisms of normal development as well as genetic and environmental causes of abnormal brain development. The journal thus provides valuable information for both physicians and biologists. To meet the rapidly expanding information needs of its readers, the journal combines original papers that report on progress and advances in developmental neuroscience with concise mini-reviews that provide a timely overview of key topics, new insights and ongoing controversies. The editorial standards of ''Developmental Neuroscience'' are high. We are committed to publishing only high quality, complete papers that make significant contributions to the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信