Transferable deep learning with coati optimization algorithm based mitotic nuclei segmentation and classification model.

IF 3.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Amal Alshardan, Nazir Ahmad, Achraf Ben Miled, Asma Alshuhail, Yazeed Alzahrani, Ahmed Mahmud
{"title":"Transferable deep learning with coati optimization algorithm based mitotic nuclei segmentation and classification model.","authors":"Amal Alshardan, Nazir Ahmad, Achraf Ben Miled, Asma Alshuhail, Yazeed Alzahrani, Ahmed Mahmud","doi":"10.1038/s41598-024-80002-3","DOIUrl":null,"url":null,"abstract":"<p><p>Image processing and pattern recognition methods have recently been extensively implemented in histopathological images (HIs). These computer-aided techniques are aimed at detecting the attentive biological markers for assisting the final cancer grading. Mitotic count (MC) is a significant cancer detection and grading parameter. Conventionally, a pathologist examines the biopsy image physically by employing higher-power microscopy. The MC cells have been marked physically at every analysis, and total MC must be utilized as a major aspect for the cancer ranking and considered as the initiative of cancers. Numerous pattern recognition algorithms for cell-sized objects in HIs depend upon segmentation to assess features. The correct description of the segmentation has been difficult, and feature outcomes can be highly complex to the segmentation. The MC cells are an essential element in many cancer grading methods. Extraction of the MC cell from the HI is a highly challenging assignment. This manuscript proposes the Coati Optimization Algorithm with Deep Learning-Driven Mitotic Nuclei Segmentation and Classification (COADL-MNSC) technique. The major aim of the COADL-MNSC technique is to utilize the DL model to segment and classify the mitotic nuclei (MN). In the preliminary stage, the COADL-MNSC approach implements median filtering (MF) for pre-processing. Besides, the COADL-MNSC approach utilizes the Hybrid Attention Fusion U-Net (HAU-UNet) model to segment the MN. Moreover, the capsule network (CapsNet) model is employed for the feature extraction method, and its hyperparameters are adjusted by utilizing the COA model. At last, the classification procedure is performed using the bidirectional long short-term memory (BiLSTM) model. Extensive simulations are performed under the MN image dataset to exhibit the excellent performance of the COADL-MNSC methodology. The experimental validation of the COADL-MNSC methodology portrayed a superior accuracy value of 98.89% over existing techniques under diverse measures.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"30557"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-80002-3","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Image processing and pattern recognition methods have recently been extensively implemented in histopathological images (HIs). These computer-aided techniques are aimed at detecting the attentive biological markers for assisting the final cancer grading. Mitotic count (MC) is a significant cancer detection and grading parameter. Conventionally, a pathologist examines the biopsy image physically by employing higher-power microscopy. The MC cells have been marked physically at every analysis, and total MC must be utilized as a major aspect for the cancer ranking and considered as the initiative of cancers. Numerous pattern recognition algorithms for cell-sized objects in HIs depend upon segmentation to assess features. The correct description of the segmentation has been difficult, and feature outcomes can be highly complex to the segmentation. The MC cells are an essential element in many cancer grading methods. Extraction of the MC cell from the HI is a highly challenging assignment. This manuscript proposes the Coati Optimization Algorithm with Deep Learning-Driven Mitotic Nuclei Segmentation and Classification (COADL-MNSC) technique. The major aim of the COADL-MNSC technique is to utilize the DL model to segment and classify the mitotic nuclei (MN). In the preliminary stage, the COADL-MNSC approach implements median filtering (MF) for pre-processing. Besides, the COADL-MNSC approach utilizes the Hybrid Attention Fusion U-Net (HAU-UNet) model to segment the MN. Moreover, the capsule network (CapsNet) model is employed for the feature extraction method, and its hyperparameters are adjusted by utilizing the COA model. At last, the classification procedure is performed using the bidirectional long short-term memory (BiLSTM) model. Extensive simulations are performed under the MN image dataset to exhibit the excellent performance of the COADL-MNSC methodology. The experimental validation of the COADL-MNSC methodology portrayed a superior accuracy value of 98.89% over existing techniques under diverse measures.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信