Edna Weiß, Alberto Pauletti, Asya Egilmez, Sonja Bröer
{"title":"Testing perioperative meloxicam analgesia to enhance welfare while preserving model validity in an inflammation-induced seizure model.","authors":"Edna Weiß, Alberto Pauletti, Asya Egilmez, Sonja Bröer","doi":"10.1038/s41598-024-81925-7","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the international effort to improve laboratory animal welfare through the 3R principles (Reduce, Refine, Replace), many scientists still fail to implement and report their assessment of pain and well-being, likely due to concerns regarding the potential effects of analgesics on experimental outcomes. This study aimed to determine whether refining our viral encephalitis model with perioperative analgesia could enhance well-being and recovery after intracerebral virus infection without impacting disease outcomes. We routinely use the Theiler's Murine Encephalomyelitis Virus (TMEV) model to study virus-induced epilepsy. Given the crucial role of immune cell activation in acute seizure development, we evaluated the effects of the non-steroidal anti-inflammatory drug (NSAID) meloxicam on inflammation, neurodegeneration, and neuronal cell proliferation at 7 days post-infection (dpi). Overall, the impact of virus infection on well-being was less severe than anticipated, and meloxicam treatment did not affect well-being or nest building behavior in TMEV-infected mice. Furthermore, meloxicam treatment did not influence key experimental readouts such as seizure burden, central inflammatory response, neurodegeneration, or neuronal proliferation within the hippocampus. Notably, animals experiencing seizures displayed heightened inflammatory responses and neurodegeneration, which were not influenced by meloxicam treatment. In summary, perioperative analgesia did not compromise key outcome measures such as seizure frequency, inflammation, and neurodegeneration or -regeneration in the TMEV model. However, it also did not add any significant benefits to well-being in the first week after intracranial injections.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"30563"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-81925-7","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the international effort to improve laboratory animal welfare through the 3R principles (Reduce, Refine, Replace), many scientists still fail to implement and report their assessment of pain and well-being, likely due to concerns regarding the potential effects of analgesics on experimental outcomes. This study aimed to determine whether refining our viral encephalitis model with perioperative analgesia could enhance well-being and recovery after intracerebral virus infection without impacting disease outcomes. We routinely use the Theiler's Murine Encephalomyelitis Virus (TMEV) model to study virus-induced epilepsy. Given the crucial role of immune cell activation in acute seizure development, we evaluated the effects of the non-steroidal anti-inflammatory drug (NSAID) meloxicam on inflammation, neurodegeneration, and neuronal cell proliferation at 7 days post-infection (dpi). Overall, the impact of virus infection on well-being was less severe than anticipated, and meloxicam treatment did not affect well-being or nest building behavior in TMEV-infected mice. Furthermore, meloxicam treatment did not influence key experimental readouts such as seizure burden, central inflammatory response, neurodegeneration, or neuronal proliferation within the hippocampus. Notably, animals experiencing seizures displayed heightened inflammatory responses and neurodegeneration, which were not influenced by meloxicam treatment. In summary, perioperative analgesia did not compromise key outcome measures such as seizure frequency, inflammation, and neurodegeneration or -regeneration in the TMEV model. However, it also did not add any significant benefits to well-being in the first week after intracranial injections.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.