Methods in causal inference. Part 4: confounding in experiments.

IF 2.2 Q1 ANTHROPOLOGY
Evolutionary Human Sciences Pub Date : 2024-09-27 eCollection Date: 2024-01-01 DOI:10.1017/ehs.2024.34
Joseph A Bulbulia
{"title":"Methods in causal inference. Part 4: confounding in experiments.","authors":"Joseph A Bulbulia","doi":"10.1017/ehs.2024.34","DOIUrl":null,"url":null,"abstract":"<p><p>Confounding bias arises when a treatment and outcome share a common cause. In randomised controlled experiments (trials), treatment assignment is random, ostensibly eliminating confounding bias. Here, we use causal directed acyclic graphs to unveil eight structural sources of bias that nevertheless persist in these trials. This analysis highlights the crucial role of causal inference methods in the design and analysis of experiments, ensuring the validity of conclusions drawn from experimental data.</p>","PeriodicalId":36414,"journal":{"name":"Evolutionary Human Sciences","volume":"6 ","pages":"e43"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11658928/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Human Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/ehs.2024.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ANTHROPOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Confounding bias arises when a treatment and outcome share a common cause. In randomised controlled experiments (trials), treatment assignment is random, ostensibly eliminating confounding bias. Here, we use causal directed acyclic graphs to unveil eight structural sources of bias that nevertheless persist in these trials. This analysis highlights the crucial role of causal inference methods in the design and analysis of experiments, ensuring the validity of conclusions drawn from experimental data.

因果推理的方法。第四部分:实验中的混淆。
当一种治疗方法和结果有共同的原因时,就会出现混淆偏倚。在随机对照实验(试验)中,治疗分配是随机的,表面上消除了混杂偏差。在这里,我们使用因果有向无环图来揭示在这些试验中仍然存在的偏见的八个结构性来源。这一分析强调了因果推理方法在实验设计和分析中的关键作用,确保了从实验数据中得出结论的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Evolutionary Human Sciences
Evolutionary Human Sciences Social Sciences-Cultural Studies
CiteScore
4.60
自引率
11.50%
发文量
49
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信