IPD-Brain: An Indian histopathology dataset for glioma subtype classification.

IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ekansh Chauhan, Amit Sharma, Megha S Uppin, Manasa Kondamadugu, C V Jawahar, P K Vinod
{"title":"IPD-Brain: An Indian histopathology dataset for glioma subtype classification.","authors":"Ekansh Chauhan, Amit Sharma, Megha S Uppin, Manasa Kondamadugu, C V Jawahar, P K Vinod","doi":"10.1038/s41597-024-04225-9","DOIUrl":null,"url":null,"abstract":"<p><p>The effective management of brain tumors relies on precise typing, subtyping, and grading. We present the IPD-Brain Dataset, a crucial resource for the neuropathological community, comprising 547 high-resolution H&E stained slides from 367 patients for the study of glioma subtypes and immunohistochemical biomarkers. Scanned at 40x magnification, this dataset is one of the largest in Asia, specifically focusing on the Indian demographics. It encompasses detailed clinical annotations, including patient age, sex, radiological findings, diagnosis, CNS WHO grade, and IHC biomarker status (IDH1R132H, ATRX and TP53 along with proliferation index, Ki67), providing a rich foundation for research. The dataset is open for public access and is designed for various applications, from machine learning model training to the exploration of regional and ethnic disease variations. Preliminary validations utilizing Multiple Instance Learning for tasks such as glioma subtype classification and IHC biomarker identification underscore its potential to significantly contribute to global collaboration in brain tumor research, enhancing diagnostic precision and understanding of glioma variability across different populations.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1403"},"PeriodicalIF":5.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-04225-9","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The effective management of brain tumors relies on precise typing, subtyping, and grading. We present the IPD-Brain Dataset, a crucial resource for the neuropathological community, comprising 547 high-resolution H&E stained slides from 367 patients for the study of glioma subtypes and immunohistochemical biomarkers. Scanned at 40x magnification, this dataset is one of the largest in Asia, specifically focusing on the Indian demographics. It encompasses detailed clinical annotations, including patient age, sex, radiological findings, diagnosis, CNS WHO grade, and IHC biomarker status (IDH1R132H, ATRX and TP53 along with proliferation index, Ki67), providing a rich foundation for research. The dataset is open for public access and is designed for various applications, from machine learning model training to the exploration of regional and ethnic disease variations. Preliminary validations utilizing Multiple Instance Learning for tasks such as glioma subtype classification and IHC biomarker identification underscore its potential to significantly contribute to global collaboration in brain tumor research, enhancing diagnostic precision and understanding of glioma variability across different populations.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信