Qi Song, Alex Singh, John E McDonough, Taylor S Adams, Robin Vos, Ruben De Man, Greg Myers, Laurens J Ceulemans, Bart M Vanaudenaerde, Wim A Wuyts, Xiting Yan, Jonas Schupp, James S Hagood, Naftali Kaminski, Ziv Bar-Joseph
{"title":"Predicting lung aging using scRNA-Seq data.","authors":"Qi Song, Alex Singh, John E McDonough, Taylor S Adams, Robin Vos, Ruben De Man, Greg Myers, Laurens J Ceulemans, Bart M Vanaudenaerde, Wim A Wuyts, Xiting Yan, Jonas Schupp, James S Hagood, Naftali Kaminski, Ziv Bar-Joseph","doi":"10.1371/journal.pcbi.1012632","DOIUrl":null,"url":null,"abstract":"<p><p>Age prediction based on single cell RNA-Sequencing data (scRNA-Seq) can provide information for patients' susceptibility to various diseases and conditions. In addition, such analysis can be used to identify aging related genes and pathways. To enable age prediction based on scRNA-Seq data, we developed PolyEN, a new regression model which learns continuous representation for expression over time. These representations are then used by PolyEN to integrate genes to predict an age. Existing and new lung aging data we profiled demonstrated PolyEN's improved performance over existing methods for age prediction. Our results identified lung epithelial cells as the most significant predictors for non-smokers while lung endothelial cells led to the best chronological age prediction results for smokers.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"20 12","pages":"e1012632"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11741621/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012632","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Age prediction based on single cell RNA-Sequencing data (scRNA-Seq) can provide information for patients' susceptibility to various diseases and conditions. In addition, such analysis can be used to identify aging related genes and pathways. To enable age prediction based on scRNA-Seq data, we developed PolyEN, a new regression model which learns continuous representation for expression over time. These representations are then used by PolyEN to integrate genes to predict an age. Existing and new lung aging data we profiled demonstrated PolyEN's improved performance over existing methods for age prediction. Our results identified lung epithelial cells as the most significant predictors for non-smokers while lung endothelial cells led to the best chronological age prediction results for smokers.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.