Jessica James, Sebastian Towers, Jakob Foerster, Harrison Steel
{"title":"Optimisation strategies for directed evolution without sequencing.","authors":"Jessica James, Sebastian Towers, Jakob Foerster, Harrison Steel","doi":"10.1371/journal.pcbi.1012695","DOIUrl":null,"url":null,"abstract":"<p><p>Directed evolution can enable engineering of biological systems with minimal knowledge of their underlying sequence-to-function relationships. A typical directed evolution process consists of iterative rounds of mutagenesis and selection that are designed to steer changes in a biological system (e.g. a protein) towards some functional goal. Much work has been done, particularly leveraging advancements in machine learning, to optimise the process of directed evolution. Many of these methods, however, require DNA sequencing and synthesis, making them resource-intensive and incompatible with developments in targeted in vivo mutagenesis. Operating within the experimental constraints of established sorting-based directed evolution techniques (e.g. Fluorescence-Activated Cell Sorting, FACS), we explore approaches for optimisation of directed evolution that could in future be implemented without sequencing information. We then expand our methods to the context of emerging experimental techniques in directed evolution, which allow for single-cell selection based on fitness objectives defined from any combination of measurable traits. Finally, we explore these alternative strategies on the GB1 and TrpB empirical landscapes, demonstrating that they could lead to up to 19-fold and 7-fold increases respectively in the probability of attaining the global fitness peak.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"20 12","pages":"e1012695"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698521/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012695","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Directed evolution can enable engineering of biological systems with minimal knowledge of their underlying sequence-to-function relationships. A typical directed evolution process consists of iterative rounds of mutagenesis and selection that are designed to steer changes in a biological system (e.g. a protein) towards some functional goal. Much work has been done, particularly leveraging advancements in machine learning, to optimise the process of directed evolution. Many of these methods, however, require DNA sequencing and synthesis, making them resource-intensive and incompatible with developments in targeted in vivo mutagenesis. Operating within the experimental constraints of established sorting-based directed evolution techniques (e.g. Fluorescence-Activated Cell Sorting, FACS), we explore approaches for optimisation of directed evolution that could in future be implemented without sequencing information. We then expand our methods to the context of emerging experimental techniques in directed evolution, which allow for single-cell selection based on fitness objectives defined from any combination of measurable traits. Finally, we explore these alternative strategies on the GB1 and TrpB empirical landscapes, demonstrating that they could lead to up to 19-fold and 7-fold increases respectively in the probability of attaining the global fitness peak.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.