Optimisation strategies for directed evolution without sequencing.

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
PLoS Computational Biology Pub Date : 2024-12-19 eCollection Date: 2024-12-01 DOI:10.1371/journal.pcbi.1012695
Jessica James, Sebastian Towers, Jakob Foerster, Harrison Steel
{"title":"Optimisation strategies for directed evolution without sequencing.","authors":"Jessica James, Sebastian Towers, Jakob Foerster, Harrison Steel","doi":"10.1371/journal.pcbi.1012695","DOIUrl":null,"url":null,"abstract":"<p><p>Directed evolution can enable engineering of biological systems with minimal knowledge of their underlying sequence-to-function relationships. A typical directed evolution process consists of iterative rounds of mutagenesis and selection that are designed to steer changes in a biological system (e.g. a protein) towards some functional goal. Much work has been done, particularly leveraging advancements in machine learning, to optimise the process of directed evolution. Many of these methods, however, require DNA sequencing and synthesis, making them resource-intensive and incompatible with developments in targeted in vivo mutagenesis. Operating within the experimental constraints of established sorting-based directed evolution techniques (e.g. Fluorescence-Activated Cell Sorting, FACS), we explore approaches for optimisation of directed evolution that could in future be implemented without sequencing information. We then expand our methods to the context of emerging experimental techniques in directed evolution, which allow for single-cell selection based on fitness objectives defined from any combination of measurable traits. Finally, we explore these alternative strategies on the GB1 and TrpB empirical landscapes, demonstrating that they could lead to up to 19-fold and 7-fold increases respectively in the probability of attaining the global fitness peak.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"20 12","pages":"e1012695"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698521/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012695","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Directed evolution can enable engineering of biological systems with minimal knowledge of their underlying sequence-to-function relationships. A typical directed evolution process consists of iterative rounds of mutagenesis and selection that are designed to steer changes in a biological system (e.g. a protein) towards some functional goal. Much work has been done, particularly leveraging advancements in machine learning, to optimise the process of directed evolution. Many of these methods, however, require DNA sequencing and synthesis, making them resource-intensive and incompatible with developments in targeted in vivo mutagenesis. Operating within the experimental constraints of established sorting-based directed evolution techniques (e.g. Fluorescence-Activated Cell Sorting, FACS), we explore approaches for optimisation of directed evolution that could in future be implemented without sequencing information. We then expand our methods to the context of emerging experimental techniques in directed evolution, which allow for single-cell selection based on fitness objectives defined from any combination of measurable traits. Finally, we explore these alternative strategies on the GB1 and TrpB empirical landscapes, demonstrating that they could lead to up to 19-fold and 7-fold increases respectively in the probability of attaining the global fitness peak.

无序列定向进化的优化策略。
定向进化可以使生物系统的工程与他们潜在的序列-功能关系的最小知识。典型的定向进化过程包括反复的诱变和选择,旨在引导生物系统(例如蛋白质)的变化朝着某些功能目标发展。人们已经做了很多工作,特别是利用机器学习的进步来优化定向进化的过程。然而,这些方法中的许多都需要DNA测序和合成,这使得它们资源密集,并且与靶向体内诱变的发展不相容。在已建立的基于分选的定向进化技术(例如荧光活化细胞分选,FACS)的实验约束下,我们探索了定向进化的优化方法,这些方法将来可以在没有测序信息的情况下实现。然后,我们将我们的方法扩展到定向进化中新兴实验技术的背景下,该技术允许基于任何可测量特征组合定义的适应度目标进行单细胞选择。最后,我们在GB1和TrpB的实证景观中探讨了这些替代策略,结果表明,它们可以使达到全球适应度峰值的概率分别提高19倍和7倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Computational Biology
PLoS Computational Biology BIOCHEMICAL RESEARCH METHODS-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.10
自引率
4.70%
发文量
820
审稿时长
2.5 months
期刊介绍: PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery. Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines. Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights. Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology. Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信