Dissecting the neuronal mechanisms of pinoresinol against methamphetamine addiction based on network and experimental pharmacology.

IF 6.7 1区 医学 Q1 CHEMISTRY, MEDICINAL
Shuyuan Fan, Yize Qi, Fukang Zhang, Yatong Shi, Kunfang Ma, Qihang Pan, Ai Jiang, Luanyue He, Junlong Zhang, Tengfei Ma, Li Zhou
{"title":"Dissecting the neuronal mechanisms of pinoresinol against methamphetamine addiction based on network and experimental pharmacology.","authors":"Shuyuan Fan, Yize Qi, Fukang Zhang, Yatong Shi, Kunfang Ma, Qihang Pan, Ai Jiang, Luanyue He, Junlong Zhang, Tengfei Ma, Li Zhou","doi":"10.1016/j.phymed.2024.156322","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Addiction is a chronic brain disease in which the underlying neuronal mechanism is characterized by drug-seeking and use. Flos Daturae (FD) and its components are used to treat addiction. However, the effective ingredients of FD that are linked to the neuronal mechanisms of seeking behavior remain unclear.</p><p><strong>Objective: </strong>We aimed to explore the effect and mechanism of the monomer ingredients of FD on methamphetamine (METH) addiction.</p><p><strong>Methods: </strong>The main chemical constituents and potential targets of FD were screened using LC-MS/MS and bioinformatics method. Molecular docking was used to screen the component of FD associated with the neuronal subtype mechanism. The effectiveness of the targets in related pathways was verified by behavioral experiment, immunofluorescence and Western blot. Electrophysiology was used to identify the functions of the ingredients of FD in D1-tdTomato and D2-eGFP transgenic mice.</p><p><strong>Results: </strong>There were 125 targets of 25 active components in FD, which included dopamine 1 receptor (D1R)/dopamine 2 receptor (D2R)/cAMP signaling pathway. Furthermore, we identified that pinoresinol (PINL) is a major component of FD targeting this signaling pathway. Moreover, PINL attenuated METH-induced seeking behavior and decreased expression of c-Fos in striatal D1R neurons, but not D2R neurons. Accordingly, PINL functionally reduced the over-excitation of D1R, but not D2R neurons. Finally, we clarified that D1R/PKA pathway is a critical factor mediating the effects of PINL on METH-induced seeking behavior.</p><p><strong>Conclusion: </strong>We revealed that PINL specifically targeted D1R/PKA signaling in D1R neurons and decreased METH-induced seeking behavior, providing a new strategy to treat addictive diseases.</p>","PeriodicalId":20212,"journal":{"name":"Phytomedicine","volume":"136 ","pages":"156322"},"PeriodicalIF":6.7000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.phymed.2024.156322","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Addiction is a chronic brain disease in which the underlying neuronal mechanism is characterized by drug-seeking and use. Flos Daturae (FD) and its components are used to treat addiction. However, the effective ingredients of FD that are linked to the neuronal mechanisms of seeking behavior remain unclear.

Objective: We aimed to explore the effect and mechanism of the monomer ingredients of FD on methamphetamine (METH) addiction.

Methods: The main chemical constituents and potential targets of FD were screened using LC-MS/MS and bioinformatics method. Molecular docking was used to screen the component of FD associated with the neuronal subtype mechanism. The effectiveness of the targets in related pathways was verified by behavioral experiment, immunofluorescence and Western blot. Electrophysiology was used to identify the functions of the ingredients of FD in D1-tdTomato and D2-eGFP transgenic mice.

Results: There were 125 targets of 25 active components in FD, which included dopamine 1 receptor (D1R)/dopamine 2 receptor (D2R)/cAMP signaling pathway. Furthermore, we identified that pinoresinol (PINL) is a major component of FD targeting this signaling pathway. Moreover, PINL attenuated METH-induced seeking behavior and decreased expression of c-Fos in striatal D1R neurons, but not D2R neurons. Accordingly, PINL functionally reduced the over-excitation of D1R, but not D2R neurons. Finally, we clarified that D1R/PKA pathway is a critical factor mediating the effects of PINL on METH-induced seeking behavior.

Conclusion: We revealed that PINL specifically targeted D1R/PKA signaling in D1R neurons and decreased METH-induced seeking behavior, providing a new strategy to treat addictive diseases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Phytomedicine
Phytomedicine 医学-药学
CiteScore
10.30
自引率
5.10%
发文量
670
审稿时长
91 days
期刊介绍: Phytomedicine is a therapy-oriented journal that publishes innovative studies on the efficacy, safety, quality, and mechanisms of action of specified plant extracts, phytopharmaceuticals, and their isolated constituents. This includes clinical, pharmacological, pharmacokinetic, and toxicological studies of herbal medicinal products, preparations, and purified compounds with defined and consistent quality, ensuring reproducible pharmacological activity. Founded in 1994, Phytomedicine aims to focus and stimulate research in this field and establish internationally accepted scientific standards for pharmacological studies, proof of clinical efficacy, and safety of phytomedicines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信