The brassinosteroid signaling-related ILI-OsAIF-OsbHLH92 transcription factor module antagonistically controls leaf angle and grain size in rice.

IF 6.5 1区 生物学 Q1 PLANT SCIENCES
Mingmin Lu, Mingqian Liu, Qin Luo, Yubing He, Yanan Tian, Huadong Zhan
{"title":"The brassinosteroid signaling-related ILI-OsAIF-OsbHLH92 transcription factor module antagonistically controls leaf angle and grain size in rice.","authors":"Mingmin Lu, Mingqian Liu, Qin Luo, Yubing He, Yanan Tian, Huadong Zhan","doi":"10.1093/plphys/kiae668","DOIUrl":null,"url":null,"abstract":"<p><p>Atypical basic helix-loop-helix (bHLH) transcription factors, which lack the basic region for DNA binding, are important elements of brassinosteroid (BR) signaling. Recently, our systematic characterization of the rice (Oryza sativa) INCREASED LEAF INCLINATION (ILI) subfamily of atypical bHLHs revealed their indispensable roles in BR-mediated growth and development. Here, we reported the isolation of two additional rice ILI-interacting atypical bHLHs, ATBS1-INTERACTING FACTOR 1 (OsAIF1)/OsbHLH176 and OsAIF2/OsbHLH178. Genetic and cytological analyses of the OsAIFs knockout mutants and overexpression lines revealed that OsAIF1 and OsAIF2 negatively regulate rice leaf inclination and grain size in a synergistic and redundant manner. Compared to the wild type, osaif knockout mutants exhibited hypersensitivity to BR, while OsAIF1 and OsAIF2 overexpression lines showed greatly reduced sensitivity or complete insensitivity to BR, indicating that these two OsAIFs act as major negative regulators of rice BR signaling. As ILI-interacting negative atypical HLHs, OsAIF1 and OsAIF2 genetically counteracted the positive ILI subfamily of atypical HLHs. Moreover, OsAIF1 and OsAIF2 physically interacted with and antagonized OsbHLH92, a positive regulator of BR signaling, thereby modulating rice development and gene transcription. These findings suggested that the atypical HLHs (ILIs and OsAIF1/OsAIF2) and the bHLH (OsbHLH92) transcription factors form a triantagonistic cascade in rice, counteracting each other to fine-tune leaf angle and grain size through BR signaling. Our results provide insights into the mechanisms balancing BR signaling and growth in rice.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae668","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Atypical basic helix-loop-helix (bHLH) transcription factors, which lack the basic region for DNA binding, are important elements of brassinosteroid (BR) signaling. Recently, our systematic characterization of the rice (Oryza sativa) INCREASED LEAF INCLINATION (ILI) subfamily of atypical bHLHs revealed their indispensable roles in BR-mediated growth and development. Here, we reported the isolation of two additional rice ILI-interacting atypical bHLHs, ATBS1-INTERACTING FACTOR 1 (OsAIF1)/OsbHLH176 and OsAIF2/OsbHLH178. Genetic and cytological analyses of the OsAIFs knockout mutants and overexpression lines revealed that OsAIF1 and OsAIF2 negatively regulate rice leaf inclination and grain size in a synergistic and redundant manner. Compared to the wild type, osaif knockout mutants exhibited hypersensitivity to BR, while OsAIF1 and OsAIF2 overexpression lines showed greatly reduced sensitivity or complete insensitivity to BR, indicating that these two OsAIFs act as major negative regulators of rice BR signaling. As ILI-interacting negative atypical HLHs, OsAIF1 and OsAIF2 genetically counteracted the positive ILI subfamily of atypical HLHs. Moreover, OsAIF1 and OsAIF2 physically interacted with and antagonized OsbHLH92, a positive regulator of BR signaling, thereby modulating rice development and gene transcription. These findings suggested that the atypical HLHs (ILIs and OsAIF1/OsAIF2) and the bHLH (OsbHLH92) transcription factors form a triantagonistic cascade in rice, counteracting each other to fine-tune leaf angle and grain size through BR signaling. Our results provide insights into the mechanisms balancing BR signaling and growth in rice.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Physiology
Plant Physiology 生物-植物科学
CiteScore
12.20
自引率
5.40%
发文量
535
审稿时长
2.3 months
期刊介绍: Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research. As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信