Extracellular vesicles from platelet-poor plasma possess anti-inflammatory and anti-catabolic effects in chondrocytes stimulated with IL-1β or synovial membrane-conditioned media.

IF 2.8 3区 医学 Q1 ORTHOPEDICS
Slavomira Gulova, Lucia Slovinska, Livia K Fecskeova, Jana Bzdilova, Jana Matejova, Marko Moravek, Marek Lacko, Denisa Harvanova
{"title":"Extracellular vesicles from platelet-poor plasma possess anti-inflammatory and anti-catabolic effects in chondrocytes stimulated with IL-1β or synovial membrane-conditioned media.","authors":"Slavomira Gulova, Lucia Slovinska, Livia K Fecskeova, Jana Bzdilova, Jana Matejova, Marko Moravek, Marek Lacko, Denisa Harvanova","doi":"10.1186/s13018-024-05355-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Although osteoarthritis (OA) is the most prevalent form of arthritis, there is still no effective treatment capable of combining immunomodulatory effects with cartilage repair. Extracellular vesicles (EVs) represent a promising new generation of cell-free therapies for OA. Blood-derived products, including plasma, are an easily available and abundant source of EVs with anti-inflammatory and regenerative properties. In this study, our objective was to analyze the effect of platelet poor plasma-derived extracellular vesicles (PPP-EVs) on stimulated OA chondrocytes in vitro. We hypothesize that PPP from healthy donors could be a suitable source of EVs that can modulate the inflammatory environment of OA chondrocytes.</p><p><strong>Methods: </strong>Cartilage and synovial membrane (SM) were obtained from patients with OA and whole blood from healthy donors. Synovial membrane-conditioned media (CM / SM) was analyzed using multiplex immunoassays. EVs were isolated from PPP using size exclusion chromatography (SEC) and characterized by nanoparticle tracking analysis (NTA), Western blot, and flow cytometry (FC). The phenotype of the chondrocytes was analyzed using fluorescence microscopy and RT-qPCR. Chondrocytes were stimulated with IL-1β or CM/SM for 24 h. The impact of PPP-EVs on stimulated chondrocyte gene expression was evaluated using RT-qPCR.</p><p><strong>Results: </strong>The PPP-EVs isolated by SEC were positive for the tetraspanins CD9, CD63, and CD81. The chondrocyte phenotype was confirmed by positive expression of Collagen II and Aggrecane. CM/SM and IL-1β caused inflammatory changes in chondrocytes, which was observed by increased expression of the genes MMP-1, MMP-3 and MMP-13, RANTES, TSG-6, and YKL-40 compared to the control. PPP-EVs added to stimulated chondrocytes for 24 h significantly decreased the expression of the chondrocyte gene YKL-40, TSG-6 and MMP-1.</p><p><strong>Conclusions: </strong>In this study, we confirmed that PPP is a suitable source of EVs, which can be efficiently isolated by SEC. We found that PPP-EVs were capable of decreasing the expression of inflammatory genes in OA chondrocytes stimulated with IL-1β or CM/SM. This study provides preliminary results on PPP-EVs as an affordable and promising option to modulate the catabolic microenvironment of OA chondrocytes in vitro.</p>","PeriodicalId":16629,"journal":{"name":"Journal of Orthopaedic Surgery and Research","volume":"19 1","pages":"847"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11657764/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Surgery and Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13018-024-05355-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Although osteoarthritis (OA) is the most prevalent form of arthritis, there is still no effective treatment capable of combining immunomodulatory effects with cartilage repair. Extracellular vesicles (EVs) represent a promising new generation of cell-free therapies for OA. Blood-derived products, including plasma, are an easily available and abundant source of EVs with anti-inflammatory and regenerative properties. In this study, our objective was to analyze the effect of platelet poor plasma-derived extracellular vesicles (PPP-EVs) on stimulated OA chondrocytes in vitro. We hypothesize that PPP from healthy donors could be a suitable source of EVs that can modulate the inflammatory environment of OA chondrocytes.

Methods: Cartilage and synovial membrane (SM) were obtained from patients with OA and whole blood from healthy donors. Synovial membrane-conditioned media (CM / SM) was analyzed using multiplex immunoassays. EVs were isolated from PPP using size exclusion chromatography (SEC) and characterized by nanoparticle tracking analysis (NTA), Western blot, and flow cytometry (FC). The phenotype of the chondrocytes was analyzed using fluorescence microscopy and RT-qPCR. Chondrocytes were stimulated with IL-1β or CM/SM for 24 h. The impact of PPP-EVs on stimulated chondrocyte gene expression was evaluated using RT-qPCR.

Results: The PPP-EVs isolated by SEC were positive for the tetraspanins CD9, CD63, and CD81. The chondrocyte phenotype was confirmed by positive expression of Collagen II and Aggrecane. CM/SM and IL-1β caused inflammatory changes in chondrocytes, which was observed by increased expression of the genes MMP-1, MMP-3 and MMP-13, RANTES, TSG-6, and YKL-40 compared to the control. PPP-EVs added to stimulated chondrocytes for 24 h significantly decreased the expression of the chondrocyte gene YKL-40, TSG-6 and MMP-1.

Conclusions: In this study, we confirmed that PPP is a suitable source of EVs, which can be efficiently isolated by SEC. We found that PPP-EVs were capable of decreasing the expression of inflammatory genes in OA chondrocytes stimulated with IL-1β or CM/SM. This study provides preliminary results on PPP-EVs as an affordable and promising option to modulate the catabolic microenvironment of OA chondrocytes in vitro.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
7.70%
发文量
494
审稿时长
>12 weeks
期刊介绍: Journal of Orthopaedic Surgery and Research is an open access journal that encompasses all aspects of clinical and basic research studies related to musculoskeletal issues. Orthopaedic research is conducted at clinical and basic science levels. With the advancement of new technologies and the increasing expectation and demand from doctors and patients, we are witnessing an enormous growth in clinical orthopaedic research, particularly in the fields of traumatology, spinal surgery, joint replacement, sports medicine, musculoskeletal tumour management, hand microsurgery, foot and ankle surgery, paediatric orthopaedic, and orthopaedic rehabilitation. The involvement of basic science ranges from molecular, cellular, structural and functional perspectives to tissue engineering, gait analysis, automation and robotic surgery. Implant and biomaterial designs are new disciplines that complement clinical applications. JOSR encourages the publication of multidisciplinary research with collaboration amongst clinicians and scientists from different disciplines, which will be the trend in the coming decades.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信