Protective effects of Kaempferol on hepatic apoptosis via miR-26a-5p enhancement and regulation of TLR4/NF-κB and PKCδ in a rat model of nonalcoholic fatty liver
Eman H. Basha , Islam Ibrahim Hegab , Radwa Ismail , Marwa Mohamed Atef , Omnia Safwat El-Deeb , Rowida Rafaat Ibrahim , Heba Bassiony Ghanem , Radwa Eissa , Marwa S. Taha , Shorouk E. Mwafy , Fatma H. Rizk , Ola M. Salem , Muhammad T. Abdel Ghafar , Yasser Mostafa Hafez , Shimaa Mashal , Manar Mohammed El Tabaa , Yasmeen M. El-Harty
{"title":"Protective effects of Kaempferol on hepatic apoptosis via miR-26a-5p enhancement and regulation of TLR4/NF-κB and PKCδ in a rat model of nonalcoholic fatty liver","authors":"Eman H. Basha , Islam Ibrahim Hegab , Radwa Ismail , Marwa Mohamed Atef , Omnia Safwat El-Deeb , Rowida Rafaat Ibrahim , Heba Bassiony Ghanem , Radwa Eissa , Marwa S. Taha , Shorouk E. Mwafy , Fatma H. Rizk , Ola M. Salem , Muhammad T. Abdel Ghafar , Yasser Mostafa Hafez , Shimaa Mashal , Manar Mohammed El Tabaa , Yasmeen M. El-Harty","doi":"10.1016/j.jnutbio.2024.109833","DOIUrl":null,"url":null,"abstract":"<div><div>This study aimed to evaluate kaempferol's, a dietary flavonoid widely present in plants, potential impact on nonalcoholic fatty liver disease (NAFLD) and its underlying mechanisms. In this study, 60 adult male rats were used and divided into a control group receiving a standard pellet diet, a kaempferol-treated group receiving kaempferol (250 mg/kg), a high-fat diet (HFD) group receiving HFD, and a kaempferol-treated HFD group. At the end of the experiment, the total lipid profile and liver enzymes were assayed in the serum. Additionally, oxidative stress (malondialdehyde and superoxide dismutase), inflammatory (tumor necrosis factor-alpha), apoptotic (caspase 3) markers, and nuclear factor-κB (NF-κB) and Toll-like receptor 4 (TLR4) concentrations were assayed in the liver tissues. Furthermore, <em>miR-26a</em> and <em>PKCδ</em> gene expression and beclin 1 immunohistochemical expression were determined in liver tissues. Our findings revealed that kaempferol significantly protects against the development of NAFLD in rats as well as inflammatory, oxidative, and apoptotic changes in their liver tissues by inhibiting PKCδ and the TLR-4/NF-κB signaling pathway while enhancing autophagy (Beclin 1 expression) <em>via</em> upregulating <em>miR-26a</em> expression. Accordingly, kaempferol holds promise as a complementary medication for the prevention of NAFLD. Nonetheless, more research is needed to fully understand its additional effects on liver tissue and to develop novel medications that activate miR-26a.</div><div>A link between lipid metabolic abnormalities and miRNAs was demonstrated as upregulating miR-26a-5p by kaempferol mitigates the inflammation, apoptosis, and disrupted autophagy via regulating TLR4/NF-κB pathway and PKC in NAFLD.</div></div>","PeriodicalId":16618,"journal":{"name":"Journal of Nutritional Biochemistry","volume":"137 ","pages":"Article 109833"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutritional Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095528632400264X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to evaluate kaempferol's, a dietary flavonoid widely present in plants, potential impact on nonalcoholic fatty liver disease (NAFLD) and its underlying mechanisms. In this study, 60 adult male rats were used and divided into a control group receiving a standard pellet diet, a kaempferol-treated group receiving kaempferol (250 mg/kg), a high-fat diet (HFD) group receiving HFD, and a kaempferol-treated HFD group. At the end of the experiment, the total lipid profile and liver enzymes were assayed in the serum. Additionally, oxidative stress (malondialdehyde and superoxide dismutase), inflammatory (tumor necrosis factor-alpha), apoptotic (caspase 3) markers, and nuclear factor-κB (NF-κB) and Toll-like receptor 4 (TLR4) concentrations were assayed in the liver tissues. Furthermore, miR-26a and PKCδ gene expression and beclin 1 immunohistochemical expression were determined in liver tissues. Our findings revealed that kaempferol significantly protects against the development of NAFLD in rats as well as inflammatory, oxidative, and apoptotic changes in their liver tissues by inhibiting PKCδ and the TLR-4/NF-κB signaling pathway while enhancing autophagy (Beclin 1 expression) via upregulating miR-26a expression. Accordingly, kaempferol holds promise as a complementary medication for the prevention of NAFLD. Nonetheless, more research is needed to fully understand its additional effects on liver tissue and to develop novel medications that activate miR-26a.
A link between lipid metabolic abnormalities and miRNAs was demonstrated as upregulating miR-26a-5p by kaempferol mitigates the inflammation, apoptosis, and disrupted autophagy via regulating TLR4/NF-κB pathway and PKC in NAFLD.
期刊介绍:
Devoted to advancements in nutritional sciences, The Journal of Nutritional Biochemistry presents experimental nutrition research as it relates to: biochemistry, molecular biology, toxicology, or physiology.
Rigorous reviews by an international editorial board of distinguished scientists ensure publication of the most current and key research being conducted in nutrition at the cellular, animal and human level. In addition to its monthly features of critical reviews and research articles, The Journal of Nutritional Biochemistry also periodically publishes emerging issues, experimental methods, and other types of articles.