{"title":"The impact of Helicobacter pylori on gastric cancer formation and early warning signal identification.","authors":"Chong Yu, Jin Wang","doi":"10.1063/5.0243016","DOIUrl":null,"url":null,"abstract":"<p><p>Gastric cancer is highly prevalent in Asia and is characterized by poor prognosis post-surgery and a high recurrence rate within five years. Research has highlighted the role of Helicobacter pylori in initiating or accelerating gastric cancer development. However, quantitative analysis of its impact on gastric cancer carcinogenesis is still lacking. This study employs gene regulatory networks and landscape and flux theory, integrating genetic and epigenetic factors, to quantitatively elucidate how Helicobacter pylori influences gastric cancer progression. Varied Helicobacter pylori infection concentrations lead to significant shifts in system thermodynamic and dynamic driving forces, altering gene expression levels. Quantitative analysis of entropy production rate and mean-flux in the gastric cancer system reveals the global changes in thermodynamic and dynamic driving forces. Coupled with autocorrelation, cross correlation, and variance analysis, we pinpoint critical stages of Helicobacter pylori infection, serving as early warning signals for gastric cancer. This approach bridges theoretical and clinical realms, dynamically assessing Helicobacter pylori's impact on gastric cancer and identifying crucial early warning signals, with significant clinical and translational implications.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"161 23","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0243016","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Gastric cancer is highly prevalent in Asia and is characterized by poor prognosis post-surgery and a high recurrence rate within five years. Research has highlighted the role of Helicobacter pylori in initiating or accelerating gastric cancer development. However, quantitative analysis of its impact on gastric cancer carcinogenesis is still lacking. This study employs gene regulatory networks and landscape and flux theory, integrating genetic and epigenetic factors, to quantitatively elucidate how Helicobacter pylori influences gastric cancer progression. Varied Helicobacter pylori infection concentrations lead to significant shifts in system thermodynamic and dynamic driving forces, altering gene expression levels. Quantitative analysis of entropy production rate and mean-flux in the gastric cancer system reveals the global changes in thermodynamic and dynamic driving forces. Coupled with autocorrelation, cross correlation, and variance analysis, we pinpoint critical stages of Helicobacter pylori infection, serving as early warning signals for gastric cancer. This approach bridges theoretical and clinical realms, dynamically assessing Helicobacter pylori's impact on gastric cancer and identifying crucial early warning signals, with significant clinical and translational implications.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.