{"title":"Dynamic control of the plasmid copy number maintained without antibiotics in Escherichia coli.","authors":"Geunyung Park, Jina Yang, Sang Woo Seo","doi":"10.1186/s13036-024-00460-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Manipulating the gene expression is the key strategy to optimize the metabolic flux. Not only transcription, translation, and post-translation level control, but also the dynamic plasmid copy number (PCN) control has been studied. The dynamic PCN control systems that have been developed to date are based on the understanding of origin replication mechanisms, which limits their application to specific origins of replication and requires the use of antibiotics for plasmid maintenance. In this study, we developed a dynamic PCN control system for Escherichia coli that is maintained without antibiotics. This is achieved by regulating the transcription level of the translation initiation factor IF-1 (infA), an essential gene encoded on the plasmid, while deleting it from the plasmid-bearing host cell.</p><p><strong>Results: </strong>When validated using GFP as a reporter protein, our system demonstrated a 22-fold dynamic range in PCN within the CloDF13 origin. The system was employed to determine the optimal copy number of the plasmid carrying the cad gene, which converts an intermediate of the tricarboxylic acid cycle (TCA cycle) to itaconic acid. By optimizing the PCN, we could achieve an itaconic acid titer of 3 g/L, which is 5.3-fold higher than the control strain.</p><p><strong>Conclusions: </strong>Our system offers a strategy to identify the optimal expression level of genes that have a competitive relationship with metabolic pathways crucial for the growth of the host organism. This approach can potentially be applied to other bacterial hosts by substituting the sensing module or the essential gene.</p>","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"18 1","pages":"71"},"PeriodicalIF":5.7000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Engineering","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13036-024-00460-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Manipulating the gene expression is the key strategy to optimize the metabolic flux. Not only transcription, translation, and post-translation level control, but also the dynamic plasmid copy number (PCN) control has been studied. The dynamic PCN control systems that have been developed to date are based on the understanding of origin replication mechanisms, which limits their application to specific origins of replication and requires the use of antibiotics for plasmid maintenance. In this study, we developed a dynamic PCN control system for Escherichia coli that is maintained without antibiotics. This is achieved by regulating the transcription level of the translation initiation factor IF-1 (infA), an essential gene encoded on the plasmid, while deleting it from the plasmid-bearing host cell.
Results: When validated using GFP as a reporter protein, our system demonstrated a 22-fold dynamic range in PCN within the CloDF13 origin. The system was employed to determine the optimal copy number of the plasmid carrying the cad gene, which converts an intermediate of the tricarboxylic acid cycle (TCA cycle) to itaconic acid. By optimizing the PCN, we could achieve an itaconic acid titer of 3 g/L, which is 5.3-fold higher than the control strain.
Conclusions: Our system offers a strategy to identify the optimal expression level of genes that have a competitive relationship with metabolic pathways crucial for the growth of the host organism. This approach can potentially be applied to other bacterial hosts by substituting the sensing module or the essential gene.
期刊介绍:
Biological engineering is an emerging discipline that encompasses engineering theory and practice connected to and derived from the science of biology, just as mechanical engineering and electrical engineering are rooted in physics and chemical engineering in chemistry. Topical areas include, but are not limited to:
Synthetic biology and cellular design
Biomolecular, cellular and tissue engineering
Bioproduction and metabolic engineering
Biosensors
Ecological and environmental engineering
Biological engineering education and the biodesign process
As the official journal of the Institute of Biological Engineering, Journal of Biological Engineering provides a home for the continuum from biological information science, molecules and cells, product formation, wastes and remediation, and educational advances in curriculum content and pedagogy at the undergraduate and graduate-levels.
Manuscripts should explore commonalities with other fields of application by providing some discussion of the broader context of the work and how it connects to other areas within the field.