Intracellular mechanistic insights into cRGD-modified Bi2Se3 nanofoams for enhanced photothermal therapy via exocytosis inhibition.

IF 5.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Li Ding, Xinghua Yu, Shihao Cai, Azhar Mahmood, Wenjing Meng, Xiaotong Liu, Jiahan Liu, Jieyun Li, Xuejuan Zhang, Chuanbin Wu
{"title":"Intracellular mechanistic insights into cRGD-modified Bi<sub>2</sub>Se<sub>3</sub> nanofoams for enhanced photothermal therapy via exocytosis inhibition.","authors":"Li Ding, Xinghua Yu, Shihao Cai, Azhar Mahmood, Wenjing Meng, Xiaotong Liu, Jiahan Liu, Jieyun Li, Xuejuan Zhang, Chuanbin Wu","doi":"10.1016/j.ijpharm.2024.125093","DOIUrl":null,"url":null,"abstract":"<p><p>The cRGD peptide surface coating strategy for photothermal therapy nanoplatforms shows great promise in developing safe and effective cancer therapies. However, the precise intracellular mechanisms of these platforms remain unclear due to the complexity of intracellular trafficking and nano-bio interactions. This study investigates the nano-bio interactions of Bi<sub>2</sub>Se<sub>3</sub> nanofoams, a representative photothermal therapy nanoplatform, coated with cRGD peptide in cancer cells, focusing on endocytosis, exocytosis, and cellular trafficking. Our findings reveal that the cRGD-coated Bi<sub>2</sub>Se<sub>3</sub> nanofoams are internalized through three distinct endocytosis pathways: Rab34-mediated macropinocytosis, caveolae-dependent, and clathrin-dependent endocytosis. These nanofoams then accumulate in lysosomes via autophagy. Furthermore, inhibiting exocytosis reduces the loss of these nanofoams from cancer cells, enhancing photothermal and chemotherapy effects. This exocytosis-inhibiting strategy demonstrates significant potential for cancer therapy, validated by successful in vitro and in vivo results.</p>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":" ","pages":"125093"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ijpharm.2024.125093","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The cRGD peptide surface coating strategy for photothermal therapy nanoplatforms shows great promise in developing safe and effective cancer therapies. However, the precise intracellular mechanisms of these platforms remain unclear due to the complexity of intracellular trafficking and nano-bio interactions. This study investigates the nano-bio interactions of Bi2Se3 nanofoams, a representative photothermal therapy nanoplatform, coated with cRGD peptide in cancer cells, focusing on endocytosis, exocytosis, and cellular trafficking. Our findings reveal that the cRGD-coated Bi2Se3 nanofoams are internalized through three distinct endocytosis pathways: Rab34-mediated macropinocytosis, caveolae-dependent, and clathrin-dependent endocytosis. These nanofoams then accumulate in lysosomes via autophagy. Furthermore, inhibiting exocytosis reduces the loss of these nanofoams from cancer cells, enhancing photothermal and chemotherapy effects. This exocytosis-inhibiting strategy demonstrates significant potential for cancer therapy, validated by successful in vitro and in vivo results.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.70
自引率
8.60%
发文量
951
审稿时长
72 days
期刊介绍: The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信