{"title":"Intracellular mechanistic insights into cRGD-modified Bi<sub>2</sub>Se<sub>3</sub> nanofoams for enhanced photothermal therapy via exocytosis inhibition.","authors":"Li Ding, Xinghua Yu, Shihao Cai, Azhar Mahmood, Wenjing Meng, Xiaotong Liu, Jiahan Liu, Jieyun Li, Xuejuan Zhang, Chuanbin Wu","doi":"10.1016/j.ijpharm.2024.125093","DOIUrl":null,"url":null,"abstract":"<p><p>The cRGD peptide surface coating strategy for photothermal therapy nanoplatforms shows great promise in developing safe and effective cancer therapies. However, the precise intracellular mechanisms of these platforms remain unclear due to the complexity of intracellular trafficking and nano-bio interactions. This study investigates the nano-bio interactions of Bi<sub>2</sub>Se<sub>3</sub> nanofoams, a representative photothermal therapy nanoplatform, coated with cRGD peptide in cancer cells, focusing on endocytosis, exocytosis, and cellular trafficking. Our findings reveal that the cRGD-coated Bi<sub>2</sub>Se<sub>3</sub> nanofoams are internalized through three distinct endocytosis pathways: Rab34-mediated macropinocytosis, caveolae-dependent, and clathrin-dependent endocytosis. These nanofoams then accumulate in lysosomes via autophagy. Furthermore, inhibiting exocytosis reduces the loss of these nanofoams from cancer cells, enhancing photothermal and chemotherapy effects. This exocytosis-inhibiting strategy demonstrates significant potential for cancer therapy, validated by successful in vitro and in vivo results.</p>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":" ","pages":"125093"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ijpharm.2024.125093","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The cRGD peptide surface coating strategy for photothermal therapy nanoplatforms shows great promise in developing safe and effective cancer therapies. However, the precise intracellular mechanisms of these platforms remain unclear due to the complexity of intracellular trafficking and nano-bio interactions. This study investigates the nano-bio interactions of Bi2Se3 nanofoams, a representative photothermal therapy nanoplatform, coated with cRGD peptide in cancer cells, focusing on endocytosis, exocytosis, and cellular trafficking. Our findings reveal that the cRGD-coated Bi2Se3 nanofoams are internalized through three distinct endocytosis pathways: Rab34-mediated macropinocytosis, caveolae-dependent, and clathrin-dependent endocytosis. These nanofoams then accumulate in lysosomes via autophagy. Furthermore, inhibiting exocytosis reduces the loss of these nanofoams from cancer cells, enhancing photothermal and chemotherapy effects. This exocytosis-inhibiting strategy demonstrates significant potential for cancer therapy, validated by successful in vitro and in vivo results.
期刊介绍:
The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.