Age-related TFEB downregulation in proximal tubules causes systemic metabolic disorders and occasional apolipoprotein A4-related amyloidosis.

IF 6.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Jun Nakamura, Takeshi Yamamoto, Yoshitsugu Takabatake, Tomoko Namba-Hamano, Atsushi Takahashi, Jun Matsuda, Satoshi Minami, Shinsuke Sakai, Hiroaki Yonishi, Shihomi Maeda, Sho Matsui, Hideaki Kawai, Isao Matsui, Tadashi Yamamuro, Ryuya Edahiro, Seiji Takashima, Akira Takasawa, Yukinori Okada, Tamotsu Yoshimori, Andrea Ballabio, Yoshitaka Isaka
{"title":"Age-related TFEB downregulation in proximal tubules causes systemic metabolic disorders and occasional apolipoprotein A4-related amyloidosis.","authors":"Jun Nakamura, Takeshi Yamamoto, Yoshitsugu Takabatake, Tomoko Namba-Hamano, Atsushi Takahashi, Jun Matsuda, Satoshi Minami, Shinsuke Sakai, Hiroaki Yonishi, Shihomi Maeda, Sho Matsui, Hideaki Kawai, Isao Matsui, Tadashi Yamamuro, Ryuya Edahiro, Seiji Takashima, Akira Takasawa, Yukinori Okada, Tamotsu Yoshimori, Andrea Ballabio, Yoshitaka Isaka","doi":"10.1172/jci.insight.184451","DOIUrl":null,"url":null,"abstract":"<p><p>With the aging of society, the incidence of chronic kidney disease (CKD), a common cause of death, has been increasing. Transcription factor EB (TFEB), the master transcriptional regulator of the autophagy-lysosomal pathway, is regarded as a promising candidate for preventing various age-related diseases. However, whether TFEB in the proximal tubules plays a significant role in elderly CKD patients remains unknown. First, we found that nuclear TFEB localization in proximal tubular epithelial cells (PTECs) declined with age in both mice and humans. Next, we generated PTEC-specific Tfeb-deficient mice and bred them for up to 24 months. We found that TFEB deficiency in the proximal tubules caused metabolic disorders and occasionally led to apolipoprotein A4 (APOA4) amyloidosis. Supporting this result, we identified markedly decreased nuclear TFEB localization in the proximal tubules of elderly patients with APOA4 amyloidosis. The metabolic disturbances were accompanied with mitochondrial dysfunction due to transcriptional changes involved in fatty acid oxidation and oxidative phosphorylation pathways, as well as decreased mitochondrial clearance reflected by the accumulation of mitochondria-lysosome-related organelles, which depends on lysosomal function. These results shed light on the presumptive mechanisms of APOA4 amyloidosis pathogenesis and provide a therapeutic strategy for CKD-related metabolic disorders and APOA4 amyloidosis.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.184451","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

With the aging of society, the incidence of chronic kidney disease (CKD), a common cause of death, has been increasing. Transcription factor EB (TFEB), the master transcriptional regulator of the autophagy-lysosomal pathway, is regarded as a promising candidate for preventing various age-related diseases. However, whether TFEB in the proximal tubules plays a significant role in elderly CKD patients remains unknown. First, we found that nuclear TFEB localization in proximal tubular epithelial cells (PTECs) declined with age in both mice and humans. Next, we generated PTEC-specific Tfeb-deficient mice and bred them for up to 24 months. We found that TFEB deficiency in the proximal tubules caused metabolic disorders and occasionally led to apolipoprotein A4 (APOA4) amyloidosis. Supporting this result, we identified markedly decreased nuclear TFEB localization in the proximal tubules of elderly patients with APOA4 amyloidosis. The metabolic disturbances were accompanied with mitochondrial dysfunction due to transcriptional changes involved in fatty acid oxidation and oxidative phosphorylation pathways, as well as decreased mitochondrial clearance reflected by the accumulation of mitochondria-lysosome-related organelles, which depends on lysosomal function. These results shed light on the presumptive mechanisms of APOA4 amyloidosis pathogenesis and provide a therapeutic strategy for CKD-related metabolic disorders and APOA4 amyloidosis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
JCI insight
JCI insight Medicine-General Medicine
CiteScore
13.70
自引率
1.20%
发文量
543
审稿时长
6 weeks
期刊介绍: JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信