{"title":"Epigenetic downregulation of the proapoptotic gene <i>HOXA5</i> in oral squamous cell carcinoma.","authors":"Ying-Ju Chen, Shin-Wei Liao, Yen-Ling Lai, Yu-Fen Li, Yin-Che Lu, Chien-Kuo Tai","doi":"10.3892/mmr.2024.13421","DOIUrl":null,"url":null,"abstract":"<p><p>Homeobox A5 (<i>HOXA5</i>) has been identified as a tumor suppressor gene in breast cancers, but its role in oral squamous cell carcinoma (OSCC) has not been confirmed. The Illumina GoldenGate Assay for methylation identified that DNA methylation patterns differ between tumorous and normal tissues in the oral cavity and that <i>HOXA5</i> is one of the genes that are hypermethylated in oral tumor tissues. The present study obtained more‑complete information on the methylation status of <i>HOXA5</i> by using the Illumina Infinium MethylationEPIC BeadChip and bisulfite sequencing assays. The results indicated that <i>HOXA5</i> hypermethylation has great potential as a biomarker for detecting OSCC. Comparing <i>HOXA5</i> RNA expression between normal oral tissue and OSCC tissue samples indicated that its median level was 2.06‑fold higher in normal tissues that in OSCC tissues. Moreover, treatment using the demethylating agent 5‑aza‑2'‑deoxycytidine can upregulate <i>HOXA5</i> expression in OSCC cell lines, verifying that the silencing of <i>HOXA5</i> is primarily regulated by its hypermethylation. It was also found that upregulation of <i>HOXA5</i> expression can not only increase OSCC cell death but that it can also enhance the therapeutic effect of cisplatin both <i>in vitro</i> and <i>in vivo</i>, suggesting that <i>HOXA5</i> is an epigenetically downregulated proapoptotic gene in OSCC.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"31 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular medicine reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/mmr.2024.13421","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Homeobox A5 (HOXA5) has been identified as a tumor suppressor gene in breast cancers, but its role in oral squamous cell carcinoma (OSCC) has not been confirmed. The Illumina GoldenGate Assay for methylation identified that DNA methylation patterns differ between tumorous and normal tissues in the oral cavity and that HOXA5 is one of the genes that are hypermethylated in oral tumor tissues. The present study obtained more‑complete information on the methylation status of HOXA5 by using the Illumina Infinium MethylationEPIC BeadChip and bisulfite sequencing assays. The results indicated that HOXA5 hypermethylation has great potential as a biomarker for detecting OSCC. Comparing HOXA5 RNA expression between normal oral tissue and OSCC tissue samples indicated that its median level was 2.06‑fold higher in normal tissues that in OSCC tissues. Moreover, treatment using the demethylating agent 5‑aza‑2'‑deoxycytidine can upregulate HOXA5 expression in OSCC cell lines, verifying that the silencing of HOXA5 is primarily regulated by its hypermethylation. It was also found that upregulation of HOXA5 expression can not only increase OSCC cell death but that it can also enhance the therapeutic effect of cisplatin both in vitro and in vivo, suggesting that HOXA5 is an epigenetically downregulated proapoptotic gene in OSCC.
期刊介绍:
Molecular Medicine Reports is a monthly, peer-reviewed journal available in print and online, that includes studies devoted to molecular medicine, underscoring aspects including pharmacology, pathology, genetics, neurosciences, infectious diseases, molecular cardiology and molecular surgery. In vitro and in vivo studies of experimental model systems pertaining to the mechanisms of a variety of diseases offer researchers the necessary tools and knowledge with which to aid the diagnosis and treatment of human diseases.