Felicia Manocchio, Jordan Enepekides, Sean Nestor, Peter Giacobbe, Jennifer S Rabin, Matthew J Burke, Krista L Lanctôt, Maged Goubran, Ying Meng, Nir Lipsman, Clement Hamani, Benjamin Davidson
{"title":"Neuromodulation as a therapeutic approach for post-traumatic stress disorder: the evidence to date.","authors":"Felicia Manocchio, Jordan Enepekides, Sean Nestor, Peter Giacobbe, Jennifer S Rabin, Matthew J Burke, Krista L Lanctôt, Maged Goubran, Ying Meng, Nir Lipsman, Clement Hamani, Benjamin Davidson","doi":"10.1080/14737175.2024.2442658","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Post-traumatic stress disorder (PTSD) can have debilitating effects on quality of life, and conventional treatments show mixed results. Neuromodulation is emerging as a promising approach for treating PTSD. This review examines current neuromodulatory treatments for PTSD, and highlights methodologies, clinical outcomes, and gaps in the literature to help guide future research.</p><p><strong>Areas covered: </strong>A PubMed search identified 252 studies on PTSD and neuromodulation, of which 61 were selected for full review. These included 37 studies on repetitive transcranial magnetic stimulation (rTMS), 10 on transcranial direct current stimulation (tDCS),4 on deep brain stimulation (DBS) and 2 on focused ultrasound (FUS).</p><p><strong>Expert opinion: </strong>The present review supports the potential of neuromodulation to reduce PTSD symptoms. rTMS and tDCS targeting the dlPFC appear effective through modulating neural circuits involved in fear processing and conditioning, however, literature varies regarding efficacy of stimulation frequencies and hemispheric targets. DBS targeting the amygdala or subcallosal cingulate white matter tracts improves treatment of refractory PTSD with sustained benefits, while FUS may improve symptoms through targeted modulation of brain structures such as the amygdala, though this technique is in the early stages of exploration. Future research should refine established neuromodulatory approaches and address gaps in emerging modalities to enhance treatment efficacy.</p>","PeriodicalId":12190,"journal":{"name":"Expert Review of Neurotherapeutics","volume":" ","pages":"101-120"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Neurotherapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14737175.2024.2442658","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Post-traumatic stress disorder (PTSD) can have debilitating effects on quality of life, and conventional treatments show mixed results. Neuromodulation is emerging as a promising approach for treating PTSD. This review examines current neuromodulatory treatments for PTSD, and highlights methodologies, clinical outcomes, and gaps in the literature to help guide future research.
Areas covered: A PubMed search identified 252 studies on PTSD and neuromodulation, of which 61 were selected for full review. These included 37 studies on repetitive transcranial magnetic stimulation (rTMS), 10 on transcranial direct current stimulation (tDCS),4 on deep brain stimulation (DBS) and 2 on focused ultrasound (FUS).
Expert opinion: The present review supports the potential of neuromodulation to reduce PTSD symptoms. rTMS and tDCS targeting the dlPFC appear effective through modulating neural circuits involved in fear processing and conditioning, however, literature varies regarding efficacy of stimulation frequencies and hemispheric targets. DBS targeting the amygdala or subcallosal cingulate white matter tracts improves treatment of refractory PTSD with sustained benefits, while FUS may improve symptoms through targeted modulation of brain structures such as the amygdala, though this technique is in the early stages of exploration. Future research should refine established neuromodulatory approaches and address gaps in emerging modalities to enhance treatment efficacy.
期刊介绍:
Expert Review of Neurotherapeutics (ISSN 1473-7175) provides expert reviews on the use of drugs and medicines in clinical neurology and neuropsychiatry. Coverage includes disease management, new medicines and drugs in neurology, therapeutic indications, diagnostics, medical treatment guidelines and neurological diseases such as stroke, epilepsy, Alzheimer''s and Parkinson''s.
Comprehensive coverage in each review is complemented by the unique Expert Review format and includes the following sections:
Expert Opinion - a personal view of the data presented in the article, a discussion on the developments that are likely to be important in the future, and the avenues of research likely to become exciting as further studies yield more detailed results
Article Highlights – an executive summary of the author’s most critical points