Dexmedetomidine suppresses glucose-stimulated insulin secretion in pancreatic β-cells.

IF 2.8 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Munenori Kusunoki, Kiichi Hirota, Tomohiro Shoji, Takeo Uba, Yoshiyuki Matsuo, Mikio Hayashi
{"title":"Dexmedetomidine suppresses glucose-stimulated insulin secretion in pancreatic β-cells.","authors":"Munenori Kusunoki, Kiichi Hirota, Tomohiro Shoji, Takeo Uba, Yoshiyuki Matsuo, Mikio Hayashi","doi":"10.1002/2211-5463.13960","DOIUrl":null,"url":null,"abstract":"<p><p>Proper glycemic control is crucial for patient management in critical care, including perioperative care, and can influence patient prognosis. Blood glucose concentration determines insulin secretion and sensitivity and affects the intricate balance between the glucose metabolism. Human and other animal studies have demonstrated that perioperative drugs, including volatile anesthetics and intravenous anesthetics, affect glucose-stimulated insulin secretion (GSIS). Dexmedetomidine (DEX) decreases insulin release and affects glucose metabolism; however, the specific mechanism underlying this phenomenon remains largely unknown. Thus, we investigated the effect and mechanism of DEX on insulin secretion using mouse and rat pancreatic β-cell-derived MIN6 and INS-1 cell lines and primary pancreatic β-cells/islets extracted from mice. The amount of insulin secreted into the culture medium was determined using an enzyme-linked immunosorbent assay. Cell viability, cytotoxicity, and electrophysiological effects were investigated. Clinically relevant doses of DEX suppressed GSIS in MIN6 cells, INS-1 cells, and pancreatic β-cells/islets. Furthermore, DEX suppressed insulin secretion facilitated by insulinotropic factors. There was no significant difference in oxygen consumption rate, intracellular ATP levels, or caspase-3/7 activity. Electrophysiological evaluation using the patch-clamp method showed that DEX did not affect ATP-sensitive potassium (K<sub>ATP</sub>) channels, voltage-dependent potassium channels, or voltage-gated calcium channels. We demonstrated that clinically relevant doses of DEX significantly suppressed GSIS. These findings suggest that DEX inhibits a signaling pathway via α2-adrenoceptor or insulin vesicle exocytosis, resulting in GSIS suppression. Our results support the hypothesis that DEX suppresses insulin secretion and reveal some underlying mechanisms.</p>","PeriodicalId":12187,"journal":{"name":"FEBS Open Bio","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Open Bio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/2211-5463.13960","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Proper glycemic control is crucial for patient management in critical care, including perioperative care, and can influence patient prognosis. Blood glucose concentration determines insulin secretion and sensitivity and affects the intricate balance between the glucose metabolism. Human and other animal studies have demonstrated that perioperative drugs, including volatile anesthetics and intravenous anesthetics, affect glucose-stimulated insulin secretion (GSIS). Dexmedetomidine (DEX) decreases insulin release and affects glucose metabolism; however, the specific mechanism underlying this phenomenon remains largely unknown. Thus, we investigated the effect and mechanism of DEX on insulin secretion using mouse and rat pancreatic β-cell-derived MIN6 and INS-1 cell lines and primary pancreatic β-cells/islets extracted from mice. The amount of insulin secreted into the culture medium was determined using an enzyme-linked immunosorbent assay. Cell viability, cytotoxicity, and electrophysiological effects were investigated. Clinically relevant doses of DEX suppressed GSIS in MIN6 cells, INS-1 cells, and pancreatic β-cells/islets. Furthermore, DEX suppressed insulin secretion facilitated by insulinotropic factors. There was no significant difference in oxygen consumption rate, intracellular ATP levels, or caspase-3/7 activity. Electrophysiological evaluation using the patch-clamp method showed that DEX did not affect ATP-sensitive potassium (KATP) channels, voltage-dependent potassium channels, or voltage-gated calcium channels. We demonstrated that clinically relevant doses of DEX significantly suppressed GSIS. These findings suggest that DEX inhibits a signaling pathway via α2-adrenoceptor or insulin vesicle exocytosis, resulting in GSIS suppression. Our results support the hypothesis that DEX suppresses insulin secretion and reveal some underlying mechanisms.

求助全文
约1分钟内获得全文 求助全文
来源期刊
FEBS Open Bio
FEBS Open Bio BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
5.10
自引率
0.00%
发文量
173
审稿时长
10 weeks
期刊介绍: FEBS Open Bio is an online-only open access journal for the rapid publication of research articles in molecular and cellular life sciences in both health and disease. The journal''s peer review process focuses on the technical soundness of papers, leaving the assessment of their impact and importance to the scientific community. FEBS Open Bio is owned by the Federation of European Biochemical Societies (FEBS), a not-for-profit organization, and is published on behalf of FEBS by FEBS Press and Wiley. Any income from the journal will be used to support scientists through fellowships, courses, travel grants, prizes and other FEBS initiatives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信