Lumped parameter simulations of cervical lymphatic vessels: dynamics of murine cerebrospinal fluid efflux from the skull.

IF 5.9 1区 医学 Q1 NEUROSCIENCES
Daehyun Kim, Jeffrey Tithof
{"title":"Lumped parameter simulations of cervical lymphatic vessels: dynamics of murine cerebrospinal fluid efflux from the skull.","authors":"Daehyun Kim, Jeffrey Tithof","doi":"10.1186/s12987-024-00605-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Growing evidence suggests that for rodents, a substantial fraction of cerebrospinal fluid (CSF) drains by crossing the cribriform plate into the nasopharyngeal lymphatics, eventually reaching the cervical lymphatic vessels (CLVs). Disruption of this drainage pathway is associated with various neurological disorders.</p><p><strong>Methods: </strong>We employ a lumped parameter method to numerically model CSF drainage across the cribriform plate to CLVs. Our model uses intracranial pressure as an inlet pressure and central venous blood pressure as an outlet pressure. The model incorporates initial lymphatic vessels (modeling those in the nasal region) that absorb the CSF and collecting lymphatic vessels (modeling CLVs) to transport the CSF against an adverse pressure gradient. To determine unknown parameters such as wall stiffness and valve properties, we utilize a Monte Carlo approach and validate our simulation against recent in vivo experimental measurements.</p><p><strong>Results: </strong>Our parameter analysis reveals the physical characteristics of CLVs. Our results suggest that the stiffness of the vessel wall and the closing state of the valve are crucial for maintaining the vessel size and volume flow rate observed in vivo. We find that a decreased contraction amplitude and frequency leads to a reduction in volume flow rate, and we test the effects of varying the different pressures acting on the CLVs. Finally, we provide evidence that branching of initial lymphatic vessels may deviate from Murray's law to reduce sensitivity to elevated intracranial pressure.</p><p><strong>Conclusions: </strong>This is the first numerical study of CSF drainage through CLVs. Our comprehensive parameter analysis offers guidance for future numerical modeling of CLVs. This study also provides a foundation for understanding physiology of CSF drainage, helping guide future experimental studies aimed at identifying causal mechanisms of reduction in CLV transport and potential therapeutic approaches to enhance flow.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"21 1","pages":"104"},"PeriodicalIF":5.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656951/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids and Barriers of the CNS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12987-024-00605-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Growing evidence suggests that for rodents, a substantial fraction of cerebrospinal fluid (CSF) drains by crossing the cribriform plate into the nasopharyngeal lymphatics, eventually reaching the cervical lymphatic vessels (CLVs). Disruption of this drainage pathway is associated with various neurological disorders.

Methods: We employ a lumped parameter method to numerically model CSF drainage across the cribriform plate to CLVs. Our model uses intracranial pressure as an inlet pressure and central venous blood pressure as an outlet pressure. The model incorporates initial lymphatic vessels (modeling those in the nasal region) that absorb the CSF and collecting lymphatic vessels (modeling CLVs) to transport the CSF against an adverse pressure gradient. To determine unknown parameters such as wall stiffness and valve properties, we utilize a Monte Carlo approach and validate our simulation against recent in vivo experimental measurements.

Results: Our parameter analysis reveals the physical characteristics of CLVs. Our results suggest that the stiffness of the vessel wall and the closing state of the valve are crucial for maintaining the vessel size and volume flow rate observed in vivo. We find that a decreased contraction amplitude and frequency leads to a reduction in volume flow rate, and we test the effects of varying the different pressures acting on the CLVs. Finally, we provide evidence that branching of initial lymphatic vessels may deviate from Murray's law to reduce sensitivity to elevated intracranial pressure.

Conclusions: This is the first numerical study of CSF drainage through CLVs. Our comprehensive parameter analysis offers guidance for future numerical modeling of CLVs. This study also provides a foundation for understanding physiology of CSF drainage, helping guide future experimental studies aimed at identifying causal mechanisms of reduction in CLV transport and potential therapeutic approaches to enhance flow.

颈部淋巴管的集总参数模拟:小鼠脑脊液从颅骨流出的动力学。
背景:越来越多的证据表明,在啮齿类动物中,相当一部分脑脊液(CSF)通过筛状板进入鼻咽淋巴管,最终到达颈淋巴管(CLVs)。这种排水通路的破坏与各种神经系统疾病有关。方法:采用集总参数法对经筛板至clv的脑脊液引流进行数值模拟。我们的模型使用颅内压作为入口压力,中心静脉压作为出口压力。该模型包括吸收脑脊液的初始淋巴管(模拟鼻腔区域的淋巴管)和收集淋巴管(模拟clv),以对抗不利的压力梯度运输脑脊液。为了确定壁刚度和阀门性能等未知参数,我们利用蒙特卡罗方法并根据最近的体内实验测量验证我们的模拟。结果:我们的参数分析揭示了clv的物理特征。我们的研究结果表明,血管壁的刚度和阀门的关闭状态对于维持体内观察到的血管大小和体积流量至关重要。我们发现收缩幅度和频率的降低导致体积流量的降低,我们测试了不同压力作用于clv的影响。最后,我们提供的证据表明,初始淋巴管分支可能偏离默里定律,以降低对颅内压升高的敏感性。结论:这是首次通过CLVs进行脑脊液引流的数值研究。我们的综合参数分析为clv的数值模拟提供了指导。该研究还为理解脑脊液引流的生理学奠定了基础,有助于指导未来旨在确定CLV转运减少的因果机制和潜在的增强血流的治疗方法的实验研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fluids and Barriers of the CNS
Fluids and Barriers of the CNS Neuroscience-Developmental Neuroscience
CiteScore
10.70
自引率
8.20%
发文量
94
审稿时长
14 weeks
期刊介绍: "Fluids and Barriers of the CNS" is a scholarly open access journal that specializes in the intricate world of the central nervous system's fluids and barriers, which are pivotal for the health and well-being of the human body. This journal is a peer-reviewed platform that welcomes research manuscripts exploring the full spectrum of CNS fluids and barriers, with a particular focus on their roles in both health and disease. At the heart of this journal's interest is the cerebrospinal fluid (CSF), a vital fluid that circulates within the brain and spinal cord, playing a multifaceted role in the normal functioning of the brain and in various neurological conditions. The journal delves into the composition, circulation, and absorption of CSF, as well as its relationship with the parenchymal interstitial fluid and the neurovascular unit at the blood-brain barrier (BBB).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信