Zhongxin Huang, Helin Zheng, Longlun Wang, Shuang Ding, Rong Li, Yong Qing, Song Peng, Min Zhu, Jinhua Cai
{"title":"Aberrant brain structural-functional coupling and structural/functional network topology explain developmental delays in pediatric Prader-Willi syndrome.","authors":"Zhongxin Huang, Helin Zheng, Longlun Wang, Shuang Ding, Rong Li, Yong Qing, Song Peng, Min Zhu, Jinhua Cai","doi":"10.1007/s00787-024-02631-3","DOIUrl":null,"url":null,"abstract":"<p><p>Prader-Willi syndrome (PWS) is a neurodevelopmental disorder characterized by dysplasia in early life. Psychoradiology studies have suggested that mental and behavioral deficits in individuals with PWS are linked to abnormalities in brain structural and functional networks. However, little is known about changes in network-based structural-functional coupling and structural/functional topological properties and their correlations with developmental scales in children with PWS. Here, we acquired diffusion tensor imaging and resting-state functional magnetic resonance imaging data from 25 children with PWS and 28 age- and sex-matched healthy controls, constructed structural and functional networks, examined intergroup differences in structural-functional coupling and structural/functional topological properties (both global and nodal), and tested their partial correlations with developmental scales. We found that children with PWS exhibited (1) decreased structural-functional coupling, (2) a higher characteristic path length and lower global efficiency in the structural network in terms of global properties, (3) alterations in classical cortical and subcortical networks in terms of nodal properties, with the structural network dominated by decreases and the functional network dominated by increases, and (4) partial correlation with developmental scales, especially for functional networks. These findings suggest that structural-functional decoupling and abundant structural/functional network topological properties may reveal the mechanism of early neurodevelopmental delays in PWS from a neuroimaging perspective and might serve as potential markers to assess early neurodevelopmental backwardness in PWS.</p>","PeriodicalId":11856,"journal":{"name":"European Child & Adolescent Psychiatry","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Child & Adolescent Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00787-024-02631-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PEDIATRICS","Score":null,"Total":0}
引用次数: 0
Abstract
Prader-Willi syndrome (PWS) is a neurodevelopmental disorder characterized by dysplasia in early life. Psychoradiology studies have suggested that mental and behavioral deficits in individuals with PWS are linked to abnormalities in brain structural and functional networks. However, little is known about changes in network-based structural-functional coupling and structural/functional topological properties and their correlations with developmental scales in children with PWS. Here, we acquired diffusion tensor imaging and resting-state functional magnetic resonance imaging data from 25 children with PWS and 28 age- and sex-matched healthy controls, constructed structural and functional networks, examined intergroup differences in structural-functional coupling and structural/functional topological properties (both global and nodal), and tested their partial correlations with developmental scales. We found that children with PWS exhibited (1) decreased structural-functional coupling, (2) a higher characteristic path length and lower global efficiency in the structural network in terms of global properties, (3) alterations in classical cortical and subcortical networks in terms of nodal properties, with the structural network dominated by decreases and the functional network dominated by increases, and (4) partial correlation with developmental scales, especially for functional networks. These findings suggest that structural-functional decoupling and abundant structural/functional network topological properties may reveal the mechanism of early neurodevelopmental delays in PWS from a neuroimaging perspective and might serve as potential markers to assess early neurodevelopmental backwardness in PWS.
期刊介绍:
European Child and Adolescent Psychiatry is Europe''s only peer-reviewed journal entirely devoted to child and adolescent psychiatry. It aims to further a broad understanding of psychopathology in children and adolescents. Empirical research is its foundation, and clinical relevance is its hallmark.
European Child and Adolescent Psychiatry welcomes in particular papers covering neuropsychiatry, cognitive neuroscience, genetics, neuroimaging, pharmacology, and related fields of interest. Contributions are encouraged from all around the world.