Aberrant brain structural-functional coupling and structural/functional network topology explain developmental delays in pediatric Prader-Willi syndrome.

IF 6 2区 医学 Q1 PEDIATRICS
Zhongxin Huang, Helin Zheng, Longlun Wang, Shuang Ding, Rong Li, Yong Qing, Song Peng, Min Zhu, Jinhua Cai
{"title":"Aberrant brain structural-functional coupling and structural/functional network topology explain developmental delays in pediatric Prader-Willi syndrome.","authors":"Zhongxin Huang, Helin Zheng, Longlun Wang, Shuang Ding, Rong Li, Yong Qing, Song Peng, Min Zhu, Jinhua Cai","doi":"10.1007/s00787-024-02631-3","DOIUrl":null,"url":null,"abstract":"<p><p>Prader-Willi syndrome (PWS) is a neurodevelopmental disorder characterized by dysplasia in early life. Psychoradiology studies have suggested that mental and behavioral deficits in individuals with PWS are linked to abnormalities in brain structural and functional networks. However, little is known about changes in network-based structural-functional coupling and structural/functional topological properties and their correlations with developmental scales in children with PWS. Here, we acquired diffusion tensor imaging and resting-state functional magnetic resonance imaging data from 25 children with PWS and 28 age- and sex-matched healthy controls, constructed structural and functional networks, examined intergroup differences in structural-functional coupling and structural/functional topological properties (both global and nodal), and tested their partial correlations with developmental scales. We found that children with PWS exhibited (1) decreased structural-functional coupling, (2) a higher characteristic path length and lower global efficiency in the structural network in terms of global properties, (3) alterations in classical cortical and subcortical networks in terms of nodal properties, with the structural network dominated by decreases and the functional network dominated by increases, and (4) partial correlation with developmental scales, especially for functional networks. These findings suggest that structural-functional decoupling and abundant structural/functional network topological properties may reveal the mechanism of early neurodevelopmental delays in PWS from a neuroimaging perspective and might serve as potential markers to assess early neurodevelopmental backwardness in PWS.</p>","PeriodicalId":11856,"journal":{"name":"European Child & Adolescent Psychiatry","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Child & Adolescent Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00787-024-02631-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PEDIATRICS","Score":null,"Total":0}
引用次数: 0

Abstract

Prader-Willi syndrome (PWS) is a neurodevelopmental disorder characterized by dysplasia in early life. Psychoradiology studies have suggested that mental and behavioral deficits in individuals with PWS are linked to abnormalities in brain structural and functional networks. However, little is known about changes in network-based structural-functional coupling and structural/functional topological properties and their correlations with developmental scales in children with PWS. Here, we acquired diffusion tensor imaging and resting-state functional magnetic resonance imaging data from 25 children with PWS and 28 age- and sex-matched healthy controls, constructed structural and functional networks, examined intergroup differences in structural-functional coupling and structural/functional topological properties (both global and nodal), and tested their partial correlations with developmental scales. We found that children with PWS exhibited (1) decreased structural-functional coupling, (2) a higher characteristic path length and lower global efficiency in the structural network in terms of global properties, (3) alterations in classical cortical and subcortical networks in terms of nodal properties, with the structural network dominated by decreases and the functional network dominated by increases, and (4) partial correlation with developmental scales, especially for functional networks. These findings suggest that structural-functional decoupling and abundant structural/functional network topological properties may reveal the mechanism of early neurodevelopmental delays in PWS from a neuroimaging perspective and might serve as potential markers to assess early neurodevelopmental backwardness in PWS.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.80
自引率
4.70%
发文量
186
审稿时长
6-12 weeks
期刊介绍: European Child and Adolescent Psychiatry is Europe''s only peer-reviewed journal entirely devoted to child and adolescent psychiatry. It aims to further a broad understanding of psychopathology in children and adolescents. Empirical research is its foundation, and clinical relevance is its hallmark. European Child and Adolescent Psychiatry welcomes in particular papers covering neuropsychiatry, cognitive neuroscience, genetics, neuroimaging, pharmacology, and related fields of interest. Contributions are encouraged from all around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信