Repeat and haplotype aware error correction in nanopore sequencing reads with DeChat.

IF 5.2 1区 生物学 Q1 BIOLOGY
Yuansheng Liu, Yichen Li, Enlian Chen, Jialu Xu, Wenhai Zhang, Xiangxiang Zeng, Xiao Luo
{"title":"Repeat and haplotype aware error correction in nanopore sequencing reads with DeChat.","authors":"Yuansheng Liu, Yichen Li, Enlian Chen, Jialu Xu, Wenhai Zhang, Xiangxiang Zeng, Xiao Luo","doi":"10.1038/s42003-024-07376-y","DOIUrl":null,"url":null,"abstract":"<p><p>Error self-correction is crucial for analyzing long-read sequencing data, but existing methods often struggle with noisy data or are tailored to technologies like PacBio HiFi. There is a gap in methods optimized for Nanopore R10 simplex reads, which typically have error rates below 2%. We introduce DeChat, a novel approach designed specifically for these reads. DeChat enables repeat- and haplotype-aware error correction, leveraging the strengths of both de Bruijn graphs and variant-aware multiple sequence alignment to create a synergistic approach. This approach avoids read overcorrection, ensuring that variants in repeats and haplotypes are preserved while sequencing errors are accurately corrected. Benchmarking on simulated and real datasets shows that DeChat-corrected reads have significantly fewer errors-up to two orders of magnitude lower-compared to other methods, without losing read information. Furthermore, DeChat-corrected reads clearly improves genome assembly and taxonomic classification.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"7 1","pages":"1678"},"PeriodicalIF":5.2000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-024-07376-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Error self-correction is crucial for analyzing long-read sequencing data, but existing methods often struggle with noisy data or are tailored to technologies like PacBio HiFi. There is a gap in methods optimized for Nanopore R10 simplex reads, which typically have error rates below 2%. We introduce DeChat, a novel approach designed specifically for these reads. DeChat enables repeat- and haplotype-aware error correction, leveraging the strengths of both de Bruijn graphs and variant-aware multiple sequence alignment to create a synergistic approach. This approach avoids read overcorrection, ensuring that variants in repeats and haplotypes are preserved while sequencing errors are accurately corrected. Benchmarking on simulated and real datasets shows that DeChat-corrected reads have significantly fewer errors-up to two orders of magnitude lower-compared to other methods, without losing read information. Furthermore, DeChat-corrected reads clearly improves genome assembly and taxonomic classification.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信