Evaluation of Tridax procumbens Secondary Metabolites Anti-Tuberculosis Activity by In Vitro and In Silico Methods.

IF 2.3 3区 生物学 Q3 MICROBIOLOGY
Jayashri Seetharaman, R Akshaya Priya, Reya Rene Philip, M Muthuraj, D Sankari
{"title":"Evaluation of Tridax procumbens Secondary Metabolites Anti-Tuberculosis Activity by In Vitro and In Silico Methods.","authors":"Jayashri Seetharaman, R Akshaya Priya, Reya Rene Philip, M Muthuraj, D Sankari","doi":"10.1007/s00284-024-04033-9","DOIUrl":null,"url":null,"abstract":"<p><p>Mycobacterium tuberculosis is a human pathogen that causes Tuberculosis (TB) disease. Researchers have reported the activity of traditional medicinal plants against human pathogens. However, antimycobacterial studies of medicinal plants against M. tuberculosis remain limited. Thus, the purpose of this study is to characterize the phytochemical profile, antibacterial and antimycobacterial activity of Tridax procumbens towards H37Rv. The antibacterial activity was elucidated by the inhibitory zone formed around the disc by performing disk diffusion method. Tridax antimycobacterial activity measured by Microplate Alamar Blue Assay (MABA) infers the sample is sensitive to H37Rv at MIC (minimum inhibitory concentration) 600 µg/mL. BACTEC MGIT 960 DST identifies the sample is susceptible to H37Rv and Rifampicin resistant (RR). Antiproliferative, functional group determination and mechanism of action of secondary metabolites were performed by MTT, Fourier transform infrared spectroscopy (FTIR) and Gas Chromatography-mass spectrometry (GC-MS). The phytocompounds antimycobacterial efficacy is further supported by molecular docking data. The binding interactions of ligands with gyrA gene revealed (S,Z)-Heptadeca-1,9-dien-4,6-diyn-3-ol molecule as a prominent phytocompound with a binding affinity of -6.6 kcal/mol.</p>","PeriodicalId":11360,"journal":{"name":"Current Microbiology","volume":"82 1","pages":"50"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00284-024-04033-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mycobacterium tuberculosis is a human pathogen that causes Tuberculosis (TB) disease. Researchers have reported the activity of traditional medicinal plants against human pathogens. However, antimycobacterial studies of medicinal plants against M. tuberculosis remain limited. Thus, the purpose of this study is to characterize the phytochemical profile, antibacterial and antimycobacterial activity of Tridax procumbens towards H37Rv. The antibacterial activity was elucidated by the inhibitory zone formed around the disc by performing disk diffusion method. Tridax antimycobacterial activity measured by Microplate Alamar Blue Assay (MABA) infers the sample is sensitive to H37Rv at MIC (minimum inhibitory concentration) 600 µg/mL. BACTEC MGIT 960 DST identifies the sample is susceptible to H37Rv and Rifampicin resistant (RR). Antiproliferative, functional group determination and mechanism of action of secondary metabolites were performed by MTT, Fourier transform infrared spectroscopy (FTIR) and Gas Chromatography-mass spectrometry (GC-MS). The phytocompounds antimycobacterial efficacy is further supported by molecular docking data. The binding interactions of ligands with gyrA gene revealed (S,Z)-Heptadeca-1,9-dien-4,6-diyn-3-ol molecule as a prominent phytocompound with a binding affinity of -6.6 kcal/mol.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Microbiology
Current Microbiology 生物-微生物学
CiteScore
4.80
自引率
3.80%
发文量
380
审稿时长
2.5 months
期刊介绍: Current Microbiology is a well-established journal that publishes articles in all aspects of microbial cells and the interactions between the microorganisms, their hosts and the environment. Current Microbiology publishes original research articles, short communications, reviews and letters to the editor, spanning the following areas: physiology, biochemistry, genetics, genomics, biotechnology, ecology, evolution, morphology, taxonomy, diagnostic methods, medical and clinical microbiology and immunology as applied to microorganisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信