A modular machine learning tool for holistic and fine-grained behavioral analysis.

IF 4.6 2区 心理学 Q1 PSYCHOLOGY, EXPERIMENTAL
Bruno Michelot, Alexandra Corneyllie, Marc Thevenet, Stefan Duffner, Fabien Perrin
{"title":"A modular machine learning tool for holistic and fine-grained behavioral analysis.","authors":"Bruno Michelot, Alexandra Corneyllie, Marc Thevenet, Stefan Duffner, Fabien Perrin","doi":"10.3758/s13428-024-02511-3","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence techniques offer promising avenues for exploring human body features from videos, yet no freely accessible tool has reliably provided holistic and fine-grained behavioral analyses to date. To address this, we developed a machine learning tool based on a two-level approach: a first lower-level processing using computer vision for extracting fine-grained and comprehensive behavioral features such as skeleton or facial points, gaze, and action units; a second level of machine learning classification coupled with explainability providing modularity, to determine which behavioral features are triggered by specific environments. To validate our tool, we filmed 16 participants across six conditions, varying according to the presence of a person (\"Pers\"), a sound (\"Snd\"), or silence (\"Rest\"), and according to emotional levels using self-referential (\"Self\") and control (\"Ctrl\") stimuli. We demonstrated the effectiveness of our approach by extracting and correcting behavior from videos using two computer vision software (OpenPose and OpenFace) and by training two algorithms (XGBoost and long short-term memory [LSTM]) to differentiate between experimental conditions. High classification rates were achieved for \"Pers\" conditions versus \"Snd\" or \"Rest\" (AUC = 0.8-0.9), with explainability revealing actions units and gaze as key features. Additionally, moderate classification rates were attained for \"Snd\" versus \"Rest\" (AUC = 0.7), attributed to action units, limbs and head points, as well as for \"Self\" versus \"Ctrl\" (AUC = 0.7-0.8), due to facial points. These findings were consistent with a more conventional hypothesis-driven approach. Overall, our study suggests that our tool is well suited for holistic and fine-grained behavioral analysis and offers modularity for extension into more complex naturalistic environments.</p>","PeriodicalId":8717,"journal":{"name":"Behavior Research Methods","volume":"57 1","pages":"24"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior Research Methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-024-02511-3","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence techniques offer promising avenues for exploring human body features from videos, yet no freely accessible tool has reliably provided holistic and fine-grained behavioral analyses to date. To address this, we developed a machine learning tool based on a two-level approach: a first lower-level processing using computer vision for extracting fine-grained and comprehensive behavioral features such as skeleton or facial points, gaze, and action units; a second level of machine learning classification coupled with explainability providing modularity, to determine which behavioral features are triggered by specific environments. To validate our tool, we filmed 16 participants across six conditions, varying according to the presence of a person ("Pers"), a sound ("Snd"), or silence ("Rest"), and according to emotional levels using self-referential ("Self") and control ("Ctrl") stimuli. We demonstrated the effectiveness of our approach by extracting and correcting behavior from videos using two computer vision software (OpenPose and OpenFace) and by training two algorithms (XGBoost and long short-term memory [LSTM]) to differentiate between experimental conditions. High classification rates were achieved for "Pers" conditions versus "Snd" or "Rest" (AUC = 0.8-0.9), with explainability revealing actions units and gaze as key features. Additionally, moderate classification rates were attained for "Snd" versus "Rest" (AUC = 0.7), attributed to action units, limbs and head points, as well as for "Self" versus "Ctrl" (AUC = 0.7-0.8), due to facial points. These findings were consistent with a more conventional hypothesis-driven approach. Overall, our study suggests that our tool is well suited for holistic and fine-grained behavioral analysis and offers modularity for extension into more complex naturalistic environments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
9.30%
发文量
266
期刊介绍: Behavior Research Methods publishes articles concerned with the methods, techniques, and instrumentation of research in experimental psychology. The journal focuses particularly on the use of computer technology in psychological research. An annual special issue is devoted to this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信